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Remarks 

- NEC Fortran Compiler conforms to the following language standards. 

  - ISO/IEC 1539-1:2004 Programming languages  

  - Fortran-OpenMP Application Program Interface Version 4.5 

 

NEC Fortran compiler also conforms a part of “ISO/IEC 1539-1:2010 Programming 

languages –Fortran" 

 

- NEC C/C++ Compiler conforms to the following language standards. 

   -ISO/IEC 9899:2011 Programming languages  

   -C-ISO/IEC 14882:2014 Programming languages  

   -C++-OpenMP Application Program Interface Version 4.5 

 

- All product, brand, or trade names in this publication are the trademarks or 

registered trademarks of their respective owners. 

- In this document, the Vector Engine is abbreviated as VE. 

- The reader of this document assumes that you have knowledge of software 

development in Fortran/C/C++ language on Linux. 

  



Preface 

 

Preface 

Majority of the discussed tuning mechanisms are verified for C/C++ and Fortran90 

development only. Also, the optimization and performance tuning avenues have 

been discussed for only NEC SX-Aurora TSUBASA target. Therefore, the 

methodologies are limited to the compilers and tools provided with the NEC      

SX-Aurora TSUBASA development and execution environment. 

 

Some of the tuning methodologies (like loop unrolling, loop-fusion, etc.) are related 

to the general concepts of code optimization and are independent of the underlying 

architecture. 

 

This document aims at exploring the architecture of NEC’s SX-Aurora TSUBASA 

Vector Engine and opportunities for source code tuning for the architecture. 

 

 

Conventions 

The following conventions are used throughout this document.  

 Names of variables, directives, options are printed in italics.  

 Syntaxes, commands appear in gray boxes. 

 Source code is enclosed in tables and boxes. 
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Chapter1 What is a Vector Architecture? 

Vector architectures grab sets of data elements scattered about memory, place them into 

large, sequential register files, operate on data in those register files, and then disperse the 

results back into memory. A single instruction operates on vectors of data, which results in 

dozens of register–register operations on independent data elements. 

A key aspect of vector architecture is the single-instruction-multiple-data (SIMD) execution 

model. SIMD support results from the type of data supported by the instruction set, and how 

instructions operate on that data. 

In a traditional scalar processor, the basic data type is an n-bit word. The architecture often 

exposes a register file of words, and the instruction set is composed of instructions that 

operate on individual words. 

In vector architecture, there is support of a vector data type, where a vector is a collection 

of VL n-bit words (VL is the vector length). Previously, vector machines operated on vectors 

stored in main memory. 



 

 

Chapter2 Toolkit on NEC SX-Aurora TSUBASA 

Once the basics of vectorization are discussed, we can now move to specific tools for NEC 

SX-Aurora TSUBASA that help the programmer achieve vectorization. 

Below is the list of compilers that are available on NEC SX-Aurora TSUBASA. 

Compiler name Language Path 

ncc C /opt/nec/ve/bin/ 

mpincc C with MPI support /opt/nec/ve/bin/ 

nfort FORTRAN /opt/nec/ve/bin/ 

mpnfort FORTRAN with MPI support /opt/nec/ve/bin/ 

These compilers support some switches which help the programmer obtain clues to perform 

optimization. They are described below: 

2.1 Format List 

The format list is an illustrative representation of the current optimization status of the source 

code. The source lines for each function together with the following information are output 

to the list. 

 Vectorization status of each loop 

 Parallelization status of each loop 

 Inline expansion status of function calls 

The format list can be obtained by using the -report-format or -report-all compiler switch. 

 

The list is created in the current directory, under the name source-file-name.L.  

 

 

 

 

 

 

 

 

 

 

ncc –report-format a.c 

 



 

 

The format list looks like below: 

 

2.2 Diagnostic List 

Diagnostics are categorized as follows and output in the list.  

     Diagnostics for inline expansion                          

     Diagnostics for optimization                      

     Diagnostics for vectorization and parallelization  

The diagnostic list gives a detailed optimization status of the source code with line numbers. 

The explanation helps the developer to strategize tuning. 

The diagnostic list can be obtained by using the -report-diagnostics or -report-all compiler 

switch. 

 

The list is created in the current directory, under the name source-file-name.L.  

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:16 

2018 (a) 

 

FILE NAME: a.c (b) 

 

FUNCTION NAME: func (c) 

FORMAT LIST 

 

LINE   LOOP      STATEMENT 

(d) (e) (f) 

1:           int func(int m, int n) 

2:           { 

3:               int i,j, a[m][n], b[m][n]; 

4: +------>      for (i = 0; i < m; i++) { 

5: |V----->         for (j = 0; j < n; j++) { 

6: ||                  a[i][j] = a[i][j] + b[i][j]; 

7: |V-----          } 

8: +------   } 

9:           return a[0][0]; 

10: } 

nfort –report-diagnostics fft.f90 

 



 

 

 

2.3 Program Information (aka PROGINF) 

Program information is a report that contains the major execution parameters such as 

Execution Time, Memory Size, Vec.Op Ratio, Avg Vector Length, etc. The generation of this 

report is controlled by the environment variable VE_PROGINF. PROGINF can be obtained by 

setting VE_PROGINF to YES or DETAIL. 

 

This report is generated after the execution of a load module. It is output to stderr after its 

complete execution. The report looks like below: 

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:20 

2018 (a) 

 

FILE NAME: fft.f90 (b) 

 

FUNCTION NAME: FFT_3D (c) 

DIAGNOSTIC LIST 

 

LINE DIAGNOSTIC MESSAGE 

(d)    (e)          (f) 

 7:   inl(1222): Inlined 

 9:   vec( 101): Vectorized loop. 440: vec(  10): Vectorization obstructive 

procedure reference.: fft1dA 

 448: vec(   1): Vectorized loop. 

 

$ export VE_PROGINF=DETAIL 

$ /opt/nec/ve/bin/ve_exec ./a.out 



 

 

ncc –ftrace source.c 

 

2.4 FTRACE – Simple Performance Analysis Function 

The compiler kit of SX supports a performance analysis function called FTRACE. 

It is used to obtain performance information on the CPU overhead and vectorization of each 

code region in a program. It can be used to obtain performance information for: 

 each function/subroutine of the program 

 any programmer-defined region 

The ftrace report can be obtained by using the -ftrace compiler switch 

 

Once the source code is compiled using the ftrace switch, an ftrace-compliant binary is 

generated. Upon execution among other output files, an ftrace report is generated by the 

name of ftrace.out. 

ftrace tool-kit provides tools to convert the ftrace.out files to text/readable format. The tools 

are available on the below path: 

            ********  Program  Information  ******** 

  Real Time (sec)                         :           204.076110 

  User Time (sec)                         :           203.706817 

  Vector Time (sec)                       :           197.623752 

  Inst. Count                             :          38596814372 

  V. Inst. Count                          :          13465836887 

  V. Element Count                        :        2957231889428 

  V. Load Element Count                   :         997524789907 

  FLOP Count                              :        1776569208614 

  MOPS                                    :         18087.515129 

  MOPS (Real)                             :         18053.533350 

  MFLOPS                                  :          8721.924006 

  MFLOPS (Real)                           :          8705.537759 

  A. V. Length                            :           219.609959 

  V. Op. Ratio (%)                        :            99.317880 

  L1 Cache Miss (sec)                     :             5.637238 

  CPU Port Conf. (sec)                    :             0.125939 

  V. Arith. Exec. (sec)                   :            29.765092 

  V. Load Exec. (sec)                     :           163.530245 

  VLD LLC Hit Element Ratio (%)           :            58.115252 

  Power Throttling (sec)                  :             0.000000 

  Thermal Throttling (sec)                :             0.000000 

  Memory Size Used (MB)                   :           592.000000 

 

  Start Time (date)        :        Tue Feb  5 23:42:11 2019 JST 

  End   Time (date)        :        Tue Feb  5 23:45:35 2019 JST 



 

 

Tool name Path Syntax 

ftrace /opt/nec/ve/bin/ ftrace -f ftrace.out -fmt1 

Once converted to text, the ftrace report looks like below: 

 

NOTE: Execution time of –ftrace execution is longer than no-ftrace execution. Delay is directly 

proportional to the no. of subroutine calls. 

*----------------------* 

FTRACE ANALYSIS LIST* 

----------------------* 

Execution Date : Sat Feb 17 12:44:49 2018 JST 

Total CPU Time : 0:03'24"569 (204.569 sec.) 

 

FREQUENCY  EXCLUSIVE       AVER.TIME     MOPS   MFLOPS  V.OP  AVER.  VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME 

           TIME[sec](  % )    [msec]                    RATIO V.LEN    TIME    MISS     CONF HIT E.% 

    1012    49.093( 24.0)    48.511  23317.2  14001.4  96.97  83.2    42.132   5.511    0.000   80.32   funcA 

  160640    37.475( 18.3)     0.233  17874.6   9985.9  95.22  52.2    34.223   1.973    2.166   96.84   funcB 

  160640    30.515( 14.9)     0.190  22141.8  12263.7  95.50  52.8    29.272   0.191    2.544   93.23   funcC 

  160640    23.434( 11.5)     0.146  44919.9  22923.2  97.75  98.5    21.869   0.741    4.590   97.82   funcD 

  160640    22.462( 11.0)     0.140  42924.5  21989.6  97.73  99.4    20.951   1.212    4.590   96.91   funcE 

53562928    15.371(  7.5)     0.000   1819.0    742.2   0.00   0.0     0.000   1.253    0.000    0.00   funcG 

       8    14.266(  7.0)  1783.201   1077.3     55.7   0.00   0.0     0.000   4.480    0.000    0.00   funcH 

  642560     5.641(  2.8)     0.009    487.7      0.2  46.45  35.1     1.833   1.609    0.007   91.68   funcF 

    2032     2.477(  1.2)     1.219    667.1      0.0  89.97  28.5     2.218   0.041    0.015   70.42   funcI 

       8     1.971(  1.0)   246.398  21586.7   7823.4  96.21  79.6     1.650   0.271    0.000    2.58   funcJ 

---------------------------------------------------------------------------------------------------------------- 

54851346   204.569(100.0)     0.004  22508.5  12210.7  95.64  76.5   154.524  17.740   13.916   90.29   total 



 

 

Chapter3 Methodology for Tuning 

This is a step-by-step procedure of tuning various applications on NEC SX-Aurora TSUBASA. 

The tuning process can be broken down to the following major steps: 

Step 1: Application analysis 

Step 2: Identification of Overall Tuning Strategy 

Step 3: Identification of Tuning Candidates  

Step 4: Identification of Specific Tuning Strategy 

Step 5: Implement Performance Tuning Strategy 

Step 6: Re-estimate Performance 

Step 7: Result Verification 

 

Let’s discuss the detailed procedure for each step mentioned. 

 

 

Apply Tuning Methodology: 

1. Vectorization Techniques 

2. Code Optimization 

3. Parameter Setting 

Application Execution 
 

Program Information 
 

ftrace REPORT 
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3.1 Analyze the Application 

The application should be analyzed in two phases: 

1. Static Analysis: Study and Investigation 

2. Performance Analysis through Execution 

3.1.1 Static analysis: Study and Investigation 

From this phase, the below information should be obtained: 

 Program Overview: Simulation methods, Convergence methods used in the application. 

 File Structure of the application: 

(1) No. of Input/Output/config files 

(2) Data Structures involved in read/write of files.  

(3) Details of routines that refer to input/output files 

 Application code flow: 

(1) Internal/External Interfaces 

(2) List of routines that are a part of the initialization part of the application 

(3) List of routines that are a part of the main calculation loop of the application. 

(4) Memory Requirements 

 Any specific frameworks used in the source code  

(1) Parallelization frameworks like MPI 

(2) Multithreading Frameworks like OpenMP, etc 

 Problem topology for parallelization 

3.1.2 Performance Analysis through Execution 

Performance tuning for an application can also be planned based on performance parameters 

from the execution reports. It is expected that the execution information meets the peak 

performance of the underlying architecture.  

 

 

 

 



 

 

            

From the above sample program information, the MFLOPS parameter is observed as nearly 

8.7 GFLOPS. There is a scope for optimization in the application source that can utilize the 

peak performance. 

Other such parameters are:  

Performance 

Parameter 

Recorded 

Value 

Target Value Remarks 

MFLOPS 8721.92 Close to peak  

A. V. Length 219.61 256      

V. Op. Ratio (%) 99.31 99.99  

VLD LLC Hit Element 

Ratio (%) 

58.11 100.00  

Referring to Amdahl’s law, it is attempted that every tuning strategy must lead to 99.99% 

vectorization of the target source code. 

There are other parameters that are vital to the overall performance; although target peak 

            ********  Program  Information  ******** 

  Real Time (sec)                         :           204.076110 

  User Time (sec)                         :           203.706817 

  Vector Time (sec)                       :           197.623752 

  Inst. Count                             :          38596814372 

  V. Inst. Count                          :          13465836887 

  V. Element Count                        :        2957231889428 

  V. Load Element Count                   :         997524789907 

  FLOP Count                              :        1776569208614 

  MOPS                                    :         18087.515129 

  MOPS (Real)                             :         18053.533350 

  MFLOPS                                  :          8721.924006 

  MFLOPS (Real)                           :          8705.537759 

  A. V. Length                            :           219.609959 

  V. Op. Ratio (%)                        :            99.317880 

  L1 Cache Miss (sec)                     :             5.637238 

  CPU Port Conf. (sec)                    :             0.125939 

  V. Arith. Exec. (sec)                   :            29.765092 

  V. Load Exec. (sec)                     :           163.530245 

  VLD LLC Hit Element Ratio (%)           :            58.115252 

  Power Throttling (sec)                  :             0.000000 

  Thermal Throttling (sec)                :             0.000000 

  Memory Size Used (MB)                   :           592.000000 

 

  Start Time (date)        :        Tue Feb  5 23:42:11 2019 JST 

  End   Time (date)        :        Tue Feb  5 23:45:35 2019 JST 



 

 

values cannot be fixed. Such parameters are preferred to be improved to as optimized as 

possible. 

Performance 

Parameter 

Recorded 

Value 

Target Value Remarks 

Real Time (sec) 204.08 Lowest Represents the wall-clock 

time 

CPU Time(sec) 203.70 Lowest Exclusive time, User Time 

Vector Time (sec) 197.62 Close to Real 

Time 

Vector–only time. Depends 

on B/F. 

Through this evaluation step, the areas for performance improvement are prioritized. Once 

prioritized, it is noted which are the parameters that need improvement first. 

When a performance parameter is not optimum, each participating high-cost routine must 

be tuned with target to improve that performance parameter. The combined effect of tuning 

of each high-cost routine will reflect on the overall performance of the application. 

Note that the performance of an application directly maps with the real time consumed for 

its execution. The motive behind improving the MFLOPS, average vector length, vectorization 

ratio, etc. is for faster execution, i.e. total execution time.  

Exceptional cases may occur where tuning brings improvement in the targeted parameter, 

say Vector Op. Ratio, but results in longer execution time. This may happen due to reasons 

like: 

 vectorization of a short loop 

 network port conflicts 

 high cost inline expansion, etc. 

In such cases, it is important to take a call where highest priority lies. General expectation 

from tuning is faster execution. The tuning measure may be rejected if it ends up slowing 

down execution. However, attempts must be made to identify the root cause of the 

exceptional behavior and rectify them so as to improve the execution time.  

Once the tuning approaches have been identified, the next step is to identify the tuning 

candidates.  

 

 

 



 

 

3.2 Identify Tuning Candidates 

We need to execute the ftrace compliant build version in order to move ahead. This ftrace 

report is then analyzed for identification of tuning avenues. 

Below is a sample ftrace report for reference: 

 

The routines are first scanned for their percentage contribution to the overall execution time 

(cost of the routine). Then those routines are selected that are higher-cost as compared to 

the rest of the participating routines (roughly greater than ~1%).  

The individual performance parameters of each shortlisted routine are scanned based on the 

above thumb rule and strategy is chosen for each routine.  

 

Tuning Approach 1: Inline Expansion 

The objective of inline expansion is to get rid of the leaves of the calling tree. By using inline 

expansion, the frequency of the iterative function calls can be decreased. Functions calls 

within loops are a common obstruction to vectorization, parallelization and optimization in 

general. Inline expansion is a tool to get rid of such obstructions. 

 A function can identified as an inline expansion candidate, if FREQUENCY is high 

and AVER. TIME is low. The gauge of high and low is relative to the application. The 

tuning personnel can judge by analysis if the “FREQUENCY:AVER.TIME” ratio is 

suitable for performing inline expansion. 

Achievement Expected: Large number of iterative calls to low cost function creates 

a major overhead. By inline expansion such functions, this overhead may be avoided.  

 If there is a high-cost routine and its vectorization/optimization is inhibited by a 

*----------------------* 

  FTRACE ANALYSIS LIST 

*----------------------* 

 

Execution Date : Tue Feb 19 12:23:39 2019 JST  

Total CPU Time : 0:05'31"547 (331.547 sec.) 

 

 

FREQUENCY  EXCLUSIVE       AVER.TIME    MOPS   MFLOPS  V.OP  AVER.  VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME 

           TIME[sec](  % )    [msec]                    RATIO V.LEN   TIME    MISS     CONF HIT E.% 

 

    16008   176.431( 53.2)    11.021   1365.0      0.0  27.44 254.0  4.345  84.385    0.738   95.05 SUB01 

 37650816    71.194( 21.5)     0.002  35742.3  11539.4  97.93 246.9 56.919  10.218    0.000   99.97 SUB02 

  4706352    47.946( 14.5)     0.010   9169.6   5266.6  89.40 246.9  5.535  23.156    0.000   99.97 SUB03 

 18825408    20.172(  6.1)     0.001  10260.1   3914.7  95.00 246.7  5.839   9.834    0.000   99.94 SUB04 

  9412704     8.020(  2.4)     0.001  60934.6  39371.2  98.22 230.9  5.105   1.229    0.000   99.81 SUB05 

 10693344     3.760(  1.1)     0.000    972.9      0.0   0.00   0.0  0.000   1.708    0.000    0.00 SUB06 

  8132064     2.407(  0.7)     0.000   1162.3      0.0   0.00   0.0  0.000   0.949    0.000    0.00 SUB07 

    16008     1.334(  0.4)     0.083  30481.5  23625.6  98.97 252.7  1.198   0.026    0.000   94.41 SUB08 

        8     0.118(  0.0)    14.750   1037.0      5.5  10.03 252.3  0.000   0.000    0.000  100.00 SUB09 

        1     0.115(  0.0)   114.572    744.8      7.6   0.01 229.0  0.000   0.049    0.000    0.00 SUB10 

    32016     0.049(  0.0)     0.002  33744.0  16414.2  98.06 246.9  0.038   0.008    0.000   99.23 SUB11 

        8     0.000(  0.0)     0.001  20920.9      0.0  95.19 250.1  0.000   0.000    0.000    0.00 SUB12 

        8     0.000(  0.0)     0.000    880.6      0.0   0.00   0.0  0.000   0.000    0.000    0.00 SUB13 

------------------------------------------------------------------------------------------------------------- 

 89484745   331.547(100.0)     0.004  11973.5   4527.6  92.31 245.1 78.979 131.562    0.738   99.80 total 



 

 

function call, the called function can be identified an inline expansion candidate. 

Achievement Expected:  

a) If the cost of the called routine is low, it may help the caller loop to be 

vectorized and further optimized. 

b) If the cost of the called routine is high, when tuned it may help improve its 

performance combined with its caller.  

c) If the cost of the called routine is high, but not tuned, its high cost will add 

up to the cost of the caller and may not contribute to overall performance 

gain. 

Inline expansion may cause a prominent re-ordering in the costs of functions of 

the original program. Hence, it is recommended to perform inline expansion 

before proceeding to other optimization strategies. 

 Automatic Inline expansion 

The compiler chooses the appropriate functions and tries to inline them 

automatically when corresponding compiler option is specified. 

 Explicit Inline expansion 

The compiler tries to automatically inline a function that is called in a statement 

after the inline expansion directive (that is specified together with the inline 

expansion directive).  

When the number of calls to the subroutine are very large and the average time 

per call is relatively small, consider inline expansion. If not, then better not to specify 

as the cost will be added to the parent/caller routine.   



 

 

 

After the inline expansion, the inline expanded routines are now included as part of the caller 

routines. 

 

*----------------------* 

  FTRACE ANALYSIS LIST 

*----------------------* 

 

Execution Date : Tue Feb 19 12:23:39 2019 JST  

Total CPU Time : 0:05'31"547 (331.547 sec.) 

 

 

FREQUENCY  EXCLUSIVE       AVER.TIME     MOPS   MFLOPS  V.OP  AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME 

           TIME[sec](  % )    [msec]                    RATIO V.LEN   TIME    MISS     CONF HIT E.% 

 

    16008   176.431( 53.2)    11.021   1365.0      0.0  27.44 254.0  4.345  84.385    0.738   95.05 SUB01 

 37650816    71.194( 21.5)     0.002  35742.3  11539.4  97.93 246.9 56.919  10.218    0.000   99.97 SUB02 

  4706352    47.946( 14.5)     0.010   9169.6   5266.6  89.40 246.9  5.535  23.156    0.000   99.97 SUB03 

 18825408    20.172(  6.1)     0.001  10260.1   3914.7  95.00 246.7  5.839   9.834    0.000   99.94 SUB04 

  9412704     8.020(  2.4)     0.001  60934.6  39371.2  98.22 230.9  5.105   1.229    0.000   99.81 SUB05 

 10693344     3.760(  1.1)     0.000    972.9      0.0   0.00   0.0  0.000   1.708    0.000    0.00 SUB06 

  8132064     2.407(  0.7)     0.000   1162.3      0.0   0.00   0.0  0.000   0.949    0.000    0.00 SUB07 

    16008     1.334(  0.4)     0.083  30481.5  23625.6  98.97 252.7  1.198   0.026    0.000   94.41 SUB08 

        8     0.118(  0.0)    14.750   1037.0      5.5  10.03 252.3  0.000   0.000    0.000  100.00 SUB09 

        1     0.115(  0.0)   114.572    744.8      7.6   0.01 229.0  0.000   0.049    0.000    0.00 SUB10 

    32016     0.049(  0.0)     0.002  33744.0  16414.2  98.06 246.9  0.038   0.008    0.000   99.23 SUB11 

        8     0.000(  0.0)     0.001  20920.9      0.0  95.19 250.1  0.000   0.000    0.000    0.00 SUB12 

        8     0.000(  0.0)     0.000    880.6      0.0   0.00   0.0  0.000   0.000    0.000    0.00 SUB13 

------------------------------------------------------------------------------------------------------------- 

 89484745   331.547(100.0)     0.004  11973.5   4527.6  92.31 245.1 78.979 131.562    0.738   99.80 total 

*----------------------* 

  FTRACE ANALYSIS LIST 

*----------------------* 

Execution Date : Tue Feb 23 14:33:32 2019 JST  

Total CPU Time : 0:02'09"983 (129.983 sec.) 

 

FREQUENCY  EXCLUSIVE       AVER.TIME     MOPS   MFLOPS  V.OP  AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME 

           TIME[sec](  % )    [msec]                    RATIO V.LEN  TIME    MISS     CONF HIT E.% 

 

  4706352    94.024( 72.3)     0.020  38555.8  15621.1  98.48 244.9  75.580  13.927    0.000   99.96 SUB03 

    16008    34.331( 26.4)     2.145   2815.5      0.0  68.38 254.0   4.423  15.960    0.738   95.16 SUB01 

    16008     1.334(  1.0)     0.083  30461.5  23609.6  98.97 252.7   1.198   0.030    0.000   94.55 SUB08 

        1     0.123(  0.1)   122.810    695.6      7.1   0.01 229.0   0.000   0.055    0.000    0.00 SUB10 

        8     0.120(  0.1)    14.961   1036.3      5.4   9.96 252.2   0.000   0.000    0.000  100.00 SUB09 

    32016     0.051(  0.0)     0.002  32922.0  16014.3  98.06 246.9   0.038   0.011    0.000   99.00 SUB11 

---------------------------------------------------------------------------------------------------------- 

  4770393   129.983(100.0)     0.027  28960.4  11548.3  97.66 245.1 81.238  29.982    0.738   99.80 total 



 

 

Tuning Approach 2: 

In order to choose the correct optimization approach for a code, one must refer to the 

diagnostic list to understand which parts of the code are inhibiting optimization. 

Eg: Refer to the Diagnostic list below  

 

…corresponding to the below code: 

 

Here, diagnostic list helps us to understand that the loop beginning at line no. 727 failed to 

be auto-vectorized completely by the compiler. The code is then analyzed by the programmer 

and optimization scheme is chosen. Suitable schemes here: 

   - Compiler Directive 

   - Loop-collapse 

   - Loop-split 

   - Inline expansion of routine calls 

 

The effect is confirmed by looking at the diagnostic list. For the example above, the diaglist 

now looks as below: 

 

LINE         DIAGNOSTIC MESSAGE 
701: vec( 101): Vectorized loop. 
727: vec( 102): Partially vectorized loop. 
729: opt(1036): Potential feedback - use directive or compiler option if OK. 
732: vec( 122): Dependency unknown. Unvectorizable dependency is assumed.: r_arr 

LINE   LOOP      STATEMENT 

 

701: V------>        do j = 1, n 

702: |                  r_arr(j) = 0 

703: |                  mark(j) = .false. 

704: V------         enddo 

705:                 r_arr(n+1) = 0 

 : 

727: S------>        do i = 1, n 

728: |                  j = rows(i) - f + 1 

729: |                  k = r_arr(j) 

730: |                  a(k) = ref_array(i) 

731: |                  c_arr(k) = cols(i) 

732: |                  r_arr(j) = r_arr(j) + 1 

733: S------         enddo 

LINE   LOOP      STATEMENT 

 

 701: V------>        do j = 1, n 

 702: |                  r_arr(j) = 0 

 703: |                  mark(j) = .false. 

 704: V------         enddo 

 705:                 r_arr(n+1) = 0 

  : 

 727:           cNEC$ ivdep 

 728: V------>        do i = 1, n 

 729: |                  j = rows(i) - f + 1 

 730: |       G          k = r_arr(j) 

 731: |       C          a(k) = ref_array(i) 

 732: |       C          c_arr(k) = cols(i) 

 733: |       C          r_arr(j) = r_arr(j) + 1 

 734: V------         enddo 

 LINE        DIAGNOSTIC MESSAGE 
 701: vec( 101): Vectorized loop. 
 707: vec( 102): Partially vectorized loop. 
 728: vec( 101): Vectorized loop. 



 

 

Tuning Approach 3: 

When a routine has been identified as high cost has several loops, it is important to 

understand which loop or segment of that function is contributing most to the execution time. 

In this situation, it is recommended to use the ftrace-region profiler extension. Each loop can 

be enclosed within a user-defined region. The report can easily specify the highest-cost loop 

within the high-cost routine. 

Refer to the PROGINF/FTRACE User’s Guide for detailed instructions. 

 



 

 

Chapter4 Performance Optimization 

Optimization is a very broad term. In general, it implies transforming the code to make some 

of its aspects to work more efficiently or use fewer resources or be more robust. For example, 

a program may be optimized so that it will execute faster or use less memory or in case of 

NEC SX-Aurora TSUBASA, use the vector resources more efficiently. 

The principle is to make a program more efficient and quicker without changing its output or 

effects. The process of optimization does not necessarily produce a totally optimal system. 

There's always a trade-off, so only the most lucrative attributes are chosen to be optimized.  

 

Example of code optimization: 

Example (C/C++): 

ORIGINAL OPTIMIZED 

: 

   x = y % 32; 

   x = y * 8; 

   x = y / w + z / w; 

   if( a==b &&c==d &&e==f ) {...} 

   if( (x &1) || (x &4) ) {...} 

   if( x>=0 &&x<8 && 

       y>=0 &&y<8 ) {...} 

   if( (x==1) || (x==2)  || 

       (x==4) || (x==8)  || ... ) 

   if( (x==2) || (x==3)  || (x==5)  || 

       (x==7) || (x==11) || (x==13) || 

       (x==17)|| (x==19) ) {...} 

. 

. 

: 

    x = y & 31; 

    x = y <<3; 

    x = (y + z) / w; 

    if( ((a-b)|(c-d)|(e-f))==0 ) {...} 

    if( x & 5 ) {...} 

    if( ((unsigned)(x|y))<8 ) {...} 

 

    if( x&(x-1)==0 &&x!=0 ) 

 

    if( (1<<x) & 

((1<<2)|(1<<3)|(1<<5)| 

(1<<7) |(1<<11)|(1<<13) 

|(1<<17)|(1<<19)) ) {...} 

. 

. 

 

Example (FORTRAN) : 

ORIGINAL OPTIMIZED 

do i=1,n            ! column indexing 

   do j=1,n 

      a(i,j) = a(i,j) + b(i,j)*c(i,j) 

   end do 

end do 

do j=1,n            ! row indexing 

   do i=1,n 

       a(i,j) = a(i,j) + b(i,j)*c(i,j) 

   end do 

end do 

 

 



 

 

4.1 Performance gain through Parallelization 

Parallel computing techniques can help reduce the time it takes to reach a solution. To derive 

the full benefits of parallelization, it is important to choose an approach that is appropriate 

for the optimization problem. 

Few frameworks are widely used nowadays to achieve parallelization. Let’s discuss some of 

those: 

4.1.1 OpenMP 

OpenMP is a specification for a set of compiler directives, library routines, and environment 

variables that can be used to specify high-level parallelism in Fortran and C/C++ programs. 

In order to parallelize a code, programmers look for regions of code whose instructions can 

be shared among the processors. Much of the time, they focus on distributing the work in 

loop nests to the processors. In most programs, the code executed on one processor requires 

results that have been calculated on another one. In principle, this is not a problem because 

a value produced by one processor can be stored in main memory and retrieved from there 

by code running on other processors as needed. However, the programmer needs to ensure 

that the value is retrieved after it has been produced, that is, that the accesses occur in the 

required order. Since the processors operate independently of one another, this is a nontrivial 

difficulty: their clocks are not synchronized, and they can and do execute their portions of 

the code at slightly different speeds. 

A number of compilers from various vendors or open source communities implement the 

OpenMP API.  

In case of NEC SX-Aurora TSUBASA environment, OpenMP is supported by the compilers ncc, 

nfort by specifying the switch -fopenmp at compilation. 

Compilation syntax on NEC SX-Aurora TSUBASA: 

 

Refer to the Fortran Compiler User’s Guide for detailed instructions on how to use OpenMP. 

4.1.2 Message Passing Interface (MPI) 

The Message-Passing Interface (MPI) is a specifications standard that supports coding of 

distributed memory parallel programs by means of message passing (point-to-point and one-

sided) and collective communication operations among processes. 

NEC MPI is an implementation of MPI Version 3.1, which uses shared memory feature of a 

% nfort -fopenmp -c a.f 

% ncc   -fopenmp -c b.c 



 

 

VH, and InfiniBand functions for communication to achieve high-performance communication. 

The Fortran compiler (nfort), C compiler (ncc), or C++ compiler (nc++) support compilation 

and linking of MPI programs. NEC MPI does not support communication in heterogeneous 

environments (for example, communication among processes that run on different multiple 

systems).  

Refer to the NEC MPI User Guide for detailed instructions on how to use MPI for parallelization. 

4.2 Performance gain through Vectorization 

The most important consideration in completely utilizing the high-speed features of the VE is 

to maximize the vectorization ratio of the part processed by vector instructions followed by 

improving the efficiency of generated vector instructions. 

This section gives suggestions on how to rewrite programs by using these tools to obtain 

improved performance. 

4.2.1 Vectorization 

Variables and single elements of an array are examples of scalar data. When arranged in a 

sequence such as a line, column, or diagonal of a matrix, is known as vector data. An ordinary 

processor has instructions (called scalar instructions) that can execute operations on only one 

data item at a time. 

The Vector Engine has advanced vector instruction sets that are capable of applying 

operations (ADD, MUL, etc.) simultaneously to multiple operands (or vector data), while 

scalar processors can only operate on pairs of operands at once. In order to take full 

advantage of the features of the Vector Engine, vector instructions are preferable to scalar 

instructions because they are much faster. Vectorization is the process of replacement of 

scalar instructions with vector instructions, thereby converting a scalar program to a vector 

program.  

In a typical C/C++ or FORTRAN program, a conversion from scalar to vector is typically 

targeted at vectorizable subjects like array expressions and loop structures. So, to vectorize 

a loop means to represent the loop such that it processes LVL elements out of total N 

elements of the array simultaneously N/LVL times (where LVL is the Vector Length – 256 for 

VE), instead of processing a single element of an array N times. 

 

 

 



 

 

Scalar Approach Vector Approach 

for (i = 0; i < 1024; i++) 

{ 

   C[i] = A[i]*B[i]; 

} 

for (i = 0; i < 1024; i++) 

{ 

   C[i] = A[i]*B[i]; 

} 

 

 

Is Vectorization a similar concept to Loop Unrolling? 

The answer is No. 

Consider the following very simple loop that adds the elements of two arrays and stores the 

results to a third array. 

Original Loop Unrolled 

for (int i=0; i<1024; ++i) 

    C[i] = A[i] + B[i]; 

 

for (int i=0; i<1024; i+=256) { 

    C[i]   = A[i]   + B[i]; 

    C[i+1] = A[i+1] + B[i+1]; 

    C[i+2] = A[i+2] + B[i+2]; 

     : 

    C[i+255] = A[i+255] + B[i+255]; 

         } 

This same simple loop, however, when vectorized will be interpreted as below: 

Original Loop Vectorized 

for (int i=0; i<1024; ++i) 

    C[i] = A[i] + B[i]; 

 

for (int i=0; i<1024; ++i) 

    compilerInstrinsic(&C[i], &A[i], &B[i]); 

Here, "compilerIntrinsic" is what the compiler uses to specify vector instructions for addition. 

In case of vectorization, there are more registers available in the hardware to perform the 

operation and the compiler enables vector instructions for the operation to execute faster 

than a series of scalar instructions corresponding to the unrolled loop. 

Automatic Vectorization is the process of generating vector instructions at compile time for a 

program by the compiler. This conversion from scalar to vector MUST guarantee the 

safeguarding of exact program behavior.  



 

 

Vector Engine has advanced automatic vectorization functions. The programmer need not 

revise a program using standard language since the compiler automatically analyzes the 

source program to detect parts that can be executed by vector instructions, and generates 

the vector version automatically. The programmer also need not be aware of architecture 

specific instructions in order to make full use of the power of Vector Engine.  

To facilitate tuning, compiler switches and compiler directives can be used to give the compiler 

some information that it cannot obtain from the source program by itself. By using these 

functions effectively, one can take good advantage of the power of VE. 

 

4.2.2 Basic Conditions for Vectorization 

The following sections describe the conditions needed for vectorization. 

 Vectorization Subjects 

Array expressions and loop structures are vectorization subjects. A loop structure consists of 

a DO construct or an IF construct and a GOTO statement. There are no constraints on the 

format of an array expression. 

(1) Loop structure must satisfy the following conditions: 

(2) The loop must have a single entrance and single exit.  

(3) The iteration count for the loop must be determined before the loop is entered.  

(4) The compiler determines that the following loop structure satisfy these conditions. 

(5) For a DO construct, no statements can pass the control of the program from 

inside the loop to outside. 

The index-variable and the loop control variable: 

‒ Must be a 4-byte, 8-byte, or integer type scalar variable, 

‒ Must not associated with other variables defined in the loop 

‒ Must be defined once in the loop body. 

(6) The increment parameter must be a constant and the relational operation must 

be .LT. / .LE. / .GT. / .GE. 

 

 



 

 

The following are examples of vectorizable DO loops. 

Example 1 Example 2 

DO  I=1,N 

   X(I)=Y(I)*Z(I) 

ENDDO 

DO  WHILE(I.LT.10) 

  I=I+1 

  X(I)=Y(I)*Z(I) 

ENDDO 

The following are examples of DO loops that are not vectorizable. 

Example 1 Example 2 Example 3 

Reason: loop control 

variable is defined twice 

in the loop body 

Reason: loop control 

variable is not a type 

integer 

Reason: relational 

operation is does not 

satisfy the conditions. 

DO  WHILE(I.LT.10) 

   I=I+1 

   IF(X(I).LT.0.0) 

     I=I+1 

ENDDO 

DO  WHILE(R.LT.10.0) 

  R=R+1.0 

ENDDO 

DO  WHILE(I.NE.10) 

  I=I+1 

ENDDO 

DO  WHILE(I.GT.0) 

  I=I+1 

ENDDO 

For an IF construct, no statements can pass the control of the program from inside the loop 

to outside. The following are examples of vectorizable IF loops. 

Example 1 Example 2 

10  IF(I.GT.10)  GOTO  20 

    I=I+1 

    : 

    GOTO 10 

20  CONTINUE 

10  J=J+1 

     : 

    IF(J.LT.10)   

        GOTO  10 

The following are examples of DO loops that are not vectorizable. 

Example 1 Example 2 Example 3 

Reason: Scalar logical 

expression conditions are not 

satisfied. 

Reason: Control structure 

does not satisfy conditions 

Reason: Relationship of 

increment parameter of 

loop-control-variable to 

scalar-logical-expression 

does not satisfy conditions. 

10 IF(X(I).LT.0.0) GOTO  20 

      I=I+1 

       : 

      GOTO  10 

20    CONTINUE 

10   X(I)=Y(I)*Z(I) 

     IF(I.GT.10)  GOTO  20 

      I=I+1 

     : 

     GOTO  10 

20  CONTINUE 

10   IF(I.NE.10)  GOTO  

20 

      I=I+3 

     : 

     GOTO  10 

20   CONTINUE 

 Vectorizable Statements 

An array expression is subject to vectorization for all executable statements it appears 

in. The following executable statements are subject to vectorization when they appear 



 

 

in a loop structure that is subject to vectorization. 

Assignment statements 

CONTINUE 

GOTO 

IF 

SELECT 

DO 

CYCLE 

IF THEN 

CASE 

ENDDO 

EXIT 

ELSE 

CASE 

ELSE IF 

END SELECT 

END IF Arithmetic IF 

statement 

The following executable statements are not subject to vectorization. 

WHERE 

WRITE 

RETURN 

CALL 

ENDWHERE 

READ   

ELSEWHERE 

PRINT 

NOTE: The WHERE, ENDWHERE, and ELSEWHERE statements are vectorized as array 

expressions. If the following executable statements appear in a loop structure, the loop 

is not vectorized. 

Assigned GOTO statement 

Computed GOTO statements 

Pointer assignment 

statements 

STOP 

PAUSE 

OPEN, CLOSE, REWIND, 

BACKSPACE, ENDFILE, INQUIRE 

ALLOCATE 

DEALLOCATE 

NULLIFY 

 Vectorizable Types 

The following types can be vectorized. 

4-byte integer types 

8-byte integer types 

Real types 

Double-precision real types 

Complex types 

Double-precision complex types 

4-byte logical types 

8-byte logical types 

2-byte integer types, quadruple-precision real types, quadruple-precision complex 

types, single-byte logical types, character types, and derived types are not subject to 

vectorization. 

 Vectorizable Operations and Assignments 

The intrinsic operations that are subject to vectorization are: 

(1) Numeric 

(2) Logical 

(3) Numeric relational  

An operand must be a constant, scalar variable, structure component, or array element 

whose type can be vectorized, an argument of an intrinsic function that can be vectorized, or 

an expression that can be vectorized. 



 

 

Character intrinsic operations, character relational intrinsic operations, and defined operations 

cannot be vectorized. 

The intrinsic assignments that can be vectorized are: 

(1) Numeric 

(2) Logical  

The left-hand side of the assignment statement must be a variable that can be vectorized. 

Character intrinsic assignments, pointer assignments, and defined assignments can be 

vectorized. 

 Vectorizable Procedures 

(1) Some intrinsic functions referenced in a loop or an array expression are replaced 

by vector versions. 

(2) Some intrinsic functions are unvectorizable and the loop that references them is 

partially vectorized. 

(3) When other procedures appear within a loop, the entire loop is not vectorized. 

(4) A SPLIT compiler directive is supplied to partially vectorize a loop which 

references those procedures. 

Refer to Fortran Compiler User’s Guide for a list of supported intrinsic functions. 

 Vectorizable Control Structures 

A WHERE structure is subject to vectorization as a whole. IF constructs and CASE 

constructs in a loop structure are subject to vectorization. If there is a large number 

of CASE blocks in a CASE construct, the entire loop may not be subject to vectorization. 

A branch within a loop structure is vectorized if the branch target comes after the 

branch. If the target comes before the branch (called a backward branch), then all 

statements in the range from that branch to the branch destination are not subject to 

vectorization. 

If a backward branch constitutes a vectorized loop structure, the branch is subject to 

vectorization. 

 

 

 



 

 

The following are examples of backward branching. 

Example 1 

     DO  I=1,N 

        : 

10   CONTINUE        

        : 

     IF(X(I).GT.0.0)  GOTO  10 

        : 

    ENDDO 

Below is a backward branch that constitutes a loop 

Example 2 

  DO  I=1,N 

        : 

10        CONTINUE 

        : 

     I=I+1 

     IF(I.LT.10)  GOTO  10 

        : 

  ENDDO 

4.2.3 Data Dependency Conditions 

When a loop structure is vectorized, the order in which operations execute after vectorization 

differs from the order in which they execute before vectorization. If a loop is to be vectorized, 

the order of defining and referencing variables and array elements that appear within the 

loop must not be changed even when they are vectorized. The conditions on the relationship 

between defining and referencing a vectorizable variable are as follows. 

If the same variable appears more than once in the loop, then either all the occurrences of 

the variable must be references, or the definition must precede the reference on all execution 

paths in the loop. If elements associated by the EQUIVALENCE statement appear more than 

once in the loop under different names, all of them must appear only as references. A macro 

operation such as inner product, element sum, maximum value, or minimum value may be 

vectorized even if the above condition is not satisfied. 

 

Example 1: Reference preceding definition 

DO I=1 ,N 

        A(l)=X 

        X=B(I)+C(I)*D(I) 

END DO 

 
This range is not vectorized 

 
    

This range is subject to vectorization 

as an inner loop. 



 

 

 

Example 2: Definition always preceding reference 

DO I=1,N 

       X=      

       Z=      

       IF(        )THEN 

            Y=      

                 =Y 

       ELSE 

                 =X 

       END IF 

                 =Z 

END DO  

 

An index variable is an exception to this rule. An index variable is an integer variable that is 

either: 

 A DO variable, or 

 An integer variable whose value changes by a constant increment at each loop 

repetition, and is defined at only one place in the loop.  

Example: I, J, and K are index variables 

DO I=1 ,N 

   J=J+1 

   K=I+3 

     . 

     . 

     . 

END DO  

If the same array element appears more than once in the loop, the relationship between its 

definition and reference must be maintained after vectorization. This condition must be 

satisfied because the execution order of statements is changed by vectorization. The following 

example shows how vectorization can change the relationship between array definitions and 

references, producing incorrect results.    

Example 

DO I=1, 6 

  A(I)=3 .0 

  B(I)=A(I+1) 

END DO 



 

 

Execution order when the example loop is 

not vectorized 

A(1)=3.0 

B(1)=A(2) 

A(2)=3.0 

B(2)=A(3) 

A(3)=3.0 

B(3)=A(4) 

   . 

   . 

   . 

   . 

Execution order when the example loop is 

vectorized 

     A(1)=3.0 

     A(2)=3.0 

     A(3)=3.0 

        . 

        . 

     B(1)=A(2) 

     B(2)=A(3) 

     B(3)=A(4) 

        . 

        . 

To maintain the correct relationship between array element definitions and references after 

vectorization, one of the following conditions must be satisfied. 

Condition A: The array elements are not defined in the loop and are only referenced. 

Condition B: If an array is defined at a point, it is not defined or referenced at any other point. 

If the array is defined or referenced at another point, elements defined or referenced there 

are completely different from the former. 

Condition C: If an element of the array is defined in each iteration of the loop, or is defined 

and referenced, the order of the definitions and references must be in an order such that the 

compiler can resolve them. In other words, if the array element is defined in the pth 

statement of a loop and referenced in the qth statement of the same loop, then the loop 

variables i and j should be related as: 

  i > j  when p > q and i ≠ j 

  i < j  when p < q and i ≠ j 

When the array element is defined and referenced in the same statement, then 

 i > j  when p = q and i ≠ j 

Please note that there is no problem if both array elements are defined, or are defined and 

referenced in the same iteration (i=j).  

Although the compiler can easily determine whether the Condition A is satisfied, it cannot 

always determine whether the conditions B or C are satisfied. The compiler can determine 

whether conditions B and C are satisfied as follows: 

 For a pair of array elements whose subscript values are different and also constant as 

the DO loop progresses, condition B is satisfied. 

 For array elements having linear subscripts, condition B or C is satisfied under these 

conditions: 



 

 

(1) A pair of array elements whose subscript values increment as iteration of the loop 

progresses. 

(2) The subscript value of the array element in the preceding statement is greater 

than or equal to the subscript value of the array element included in the later 

statement.  

    At the second iteration, the subscript value of array A is 2 in the first statement and 3 in 

the second statement. Accordingly, conditions (2) and (3) are not satisfied. 

Example 

DO I=1,N            !Loop not vectorized 

      A(I)=      

           =A(I+1) 

END DO  

 For a pair of array elements whose values decrease as iteration of the loop progresses, 

the reverse is obtained. Since the subscript values of array elements A(I) and A(I+l) 

both decrement, and the subscript value of the array element included in the later 

statement is apparently larger, condition (3) is satisfied. 

Example 

DO I=1,N,-1           !Loop vectorized 

      A(I)=      

           =A(I+1) 

END DO  

 For a pair of array elements where one subscript value increments and the other 

decrements (or either of the subscript values is constant as the loop progresses), if the 

relationship of their subscript values does not change as iteration of the loop progresses, 

condition (2) is satisfied. 

 If an array element having a nonlinear subscript is included in the definition and/or 

reference, conditions (2) and (3) are not satisfied. 

 If array elements associated by the EQUIVALENCE statement are included more than 

once in the loop under different names, and if at least one of them is included in a 

definition, conditions (2) and (3) are not satisfied. If possible, make the names the same 

and then check conditions (2) and (3). 

 When the compiler cannot determine whether conditions are satisfied, it concludes that 

the conditions are not satisfied. 

(1) If the compiler cannot determine whether the relationship between definition and 



 

 

reference is maintained correctly, the user can inform the compiler that the 

relationship is correctly maintained by using a compiler directive. 

(2) A linear subscript is an expression that satisfies the following conditions: 

‒ It is of the integer type. 

‒ It contains only addition, subtraction, multiplication, and exponentiation, in 

which the base is not an index variable and the exponent is an unsigned integer 

constant. 

‒ Only one index variable appears in each dimension. 

‒ It does not contain parentheses. 

‒ It contains only constants, index variables, and relative constants. A relative 

constant is one of the following: 

a) A variable or array element that is only referenced in the loop 

b) An intrinsic function that has only a constant or relative constant as an actual 

argument (except for the intrinsic functions that generate random numbers).  

NOTE: Vectorization can be done even if the preceding conditions are not satisfied, 

provided the operation is an iteration type. Automatic modification can also be 

performed to satisfy the preceding conditions for vectorization by replacing statements 

or using work vectors. 

A vector with a linear subscript is processed as a continuous or constant stride vector. 

The subscript expression is nonlinear if it does not satisfy these conditions, and the 

subscript value changes during loop iteration. A vector with a nonlinear subscript is 

processed as a list vector. Figure 1 shows vector types. 

 

             

Figure 1  Types of Vectors 

 



 

 

 

The following examples show the relationship between definition and reference when 

maintained correctly. 

Example 1:  

Only references 

appear in the loop 

Example 2: 

A(I) and A(I+l) do not overlap 

Example 3:  

A(I) and A(I+1) 

may overlap  

Example 4: 

A(I) and A(I+1) may 

overlap 

DO 1=1,N 

        =A(I) 

        =A(I+1) 

END DO 

DO 1=1,N,2 

        =A(I)     !A(1),A(3),.. 

   A(I+1)=        !A(2),A(4),.. 

END DO 

DO I=1,N 

       =A(I+1) 

A(I)=      

END DO 

 

DO I=N,1,-1 

       =A(I) 

  A(I+1)=      

END DO 

In Example 3 and 4, the relationship between definition and reference is maintained correctly 

after vectorization, despite possible overlap. 

The following examples show the relationship between definition and reference when not 

correctly maintained. 

Example 1 Example 2 Example 3 

DO I=1,N 

       =A(I) 

  A(I+1)=      

END DO 

DO I=N,1,-1 

  A(I)=A(I+2)*B(I)+C(I) 

END DO 

DO 1=1,N 

      A(2*I+3)=      

      A(3*I-1)=      

END DO 

The following examples show how the compiler cannot determine whether the relationship 

between definition and reference is maintained correctly. 

Example 1 Example 2 

If K is greater than zero, the relationship is 

maintained correctly, but the compiler 

cannot determine this. 

If L is equal to or less than zero, the 

relationship is maintained correctly, but the 

compiler cannot determine this. 

DO I=1,N,K 

   A(I)=A(I+2)+C(I) 

END DO 

DO I=1,N 

   A(I) =       

         = A(I+L) 

END DO 

 

4.2.4 Improving the Vectorization Ratio 

There are three major ways to raise the vectorization ratio: 

 Locate loops that were eligible for vectorization, but have not been vectorized or 

were only partially vectorized. Remove the cause of non-vectorization so that the 

part can be vectorized. 

 Find vectorizable parts that are not eligible for vectorization and rewrite the program 

so that they can be vectorized keeping strict focus on maintaining the program 



 

 

behavior. 

 Revise the algorithms used for a part of or the entire the program to make them 

suitable for vectorization.  

In the first two techniques, the program is revised to a limited extent while maintaining its 

structure and algorithms. When that approach is ineffective, the program should be reviewed 

to see if there are other algorithms more suitable for vectorization. When algorithms used in 

a program are not suitable for vectorization, the third technique has much greater effect. 

This section explains the first two techniques from the programming standpoint. 

The vectorization ratio can be improved by removing the cause of non-vectorization. When 

loops are eligible for vectorization, but are not vectorized or are only partially vectorized by 

the compiler, the cause is indicated in a vectorization diagnostic message. The user may be 

able to raise the vectorization ratio by removing the cause. The following typical examples 

show how these conditions can be removed. 

 Loops in which the compiler cannot determine whether the correct dependency 

between definition and reference would be maintained. 

Example 1 

ORIGINAL VECTORIZED 

 

DO J=1,N 

     X(J-1)=X(J-1)-X(JW)*Y(J) 

     JW=JW+1 

END DO 

!NEC$ ivdep(X) 

DO J=1,N 

     X(J-1)=X(J-1)-X(JW)*Y(J) 

     JW=JW+1 

END DO 

In this example, the compiler cannot determine whether the correct dependency between 

definition and reference (X(J-1) on the left side and X(JW) on the right side) would be 

maintained because the initial parameter of JW is unknown. If the correct dependency can 

be maintained, the following vectorization directive ‘ivdep’ may be placed immediately before 

the DO loop. 

In the following example, the compiler cannot determine whether the correct dependency 

between definition and reference of H(IX(I)) would be maintained by vectorization. 

Example 2 

ORIGINAL VECTORIZED 

 

DO I=1,N 

    IX(I)=IA(I)-IB(I)*IC(I) 

    H(IX(I))=H(IX(I))+1.0 

END DO 

!NEC$ ivdep(H) 

DO I=1,N 

    IX(I)=IA(I)-IB(I)*IC(I) 

    H(IX(I))=H(IX(I))+1.0 

END DO 

If all N values from IX(1) to IX(N) are different, the correct dependency between definition 



 

 

and reference of H(IX(I)) is maintained by vectorization, so the entire loop can be vectorized 

by inserting the following vectorization directive immediately before the loop. 

 Loops containing user defined procedure references to one of the following methods 

can be used to vectorize loops containing external, internal or module procedure 

calls. 

(1) Inline expansion 

Expand the procedure directory at the point of reference. The automatic inline 

expansion function is supplied for this. 

Example 

ORIGINAL VECTORIZED THROUGH INLINE EXPANSION 

DO I=l,N 

 CALL MAT(A(I),B(I),C(I),D(I),X,Y) 

ENDDO 

 

SUBROUTINE MAT(S,T,Y,V,A,B) 

  A=S*U+T*V 

  B=S*V-U*T 

  RETURN 

END 

DO I=l,N 

    X=A(I)*C(I)+B(I)*D(I) 

    Y=A(I)*D(I)-B(I)*C(I) 

ENDDO 

(2) SPLIT compiler directive 

If the procedure satisfies the following conditions, the SPLIT compiler directive can be 

applied to the loop to vectorize.  

‒ No STOP, PAUSE or input-output statements. 

‒ Elements in common blocks or variables referenced in the loop are not 

accessible by the user, host, or pointer association in the procedure. 

‒ Elements in common blocks and variables accessible by the user, host, or 

pointer association in the procedure are not defined in the loop. 

‒ The dummy arguments that correspond to array elements, specified as actual 

arguments, are all scalar variable names. 

‒ No pointer associations are changed. 

‒ No function arguments are defined. 

‒ Function does not have a pointer attribute. 

‒ The result of the procedure does not depend on execution time or count. 



 

 

‒ Does not have an alternate return asterisk in a dummy argument.  

CAUTION: If SPLIT is applied to a loop containing a procedure call that does not satisfy 

the conditions, the loop will be vectorized, but may produce incorrect results. 

 

4.2.5 Improving Vector Instruction Efficiency 

When a DO loop is vectorized, it executes faster, but the speed-up depends on the types of 

vector instructions generated, the loop iteration count (also called the loop length or vector 

length), and the array reference patterns. 

 

4.2.6 Lengthening the Loop 

Before a vectorized loop is executed, some preparatory processing must be accomplished for 

each vector instruction before the arithmetic begins. Since the processing time (start-up time) 

is almost constant regardless of the loop length, if the loop length is small and the actual 

vector arithmetic operations are not lengthy, the effect of start-up time significantly reduces 

the efficiency of vectorization. 

The cross length is the loop length at which the execution times of the vectorized and 

unvectorized loops are equal. In case of VE the crossover length usually varies from 5 to 10, 

depending on conditions. 

To maximize the effect of vectorization, therefore, the loop length should be made as long as 

possible. See the following figure. 

                      

Figure 2  Start-Up Time and Cross Length 

 In nested loops, interchange loops by interchanging rows and columns in a matrix, to 



 

 

maximize the length of the innermost loop. 

Example 

ORIGINAL LOOPS INTERCHANGED 

DO J=1,N           ! N=10000 

     DO I=1,M      ! M=10 

          A(I,J)=X*B(I,J)+C(I,J) 

     END DO 

END DO 

DO I=1,M               ! M=10 

     DO J=1,N          ! N=10000 

          A(I,J)=X*B(I,J)+C(I,J) 

      END DO 

END DO 

 Collapse a multiple loop to a single loop by converting a multidimensional array to a one-

dimensional array. The compiler performs such transformations, when the loop 

interchange or loop collapsing function is enabled.  

4.2.7 Improving Array Reference Patterns 

Depending on how vector data is arranged, a vector can be continuous, constant stride, or a 

list vector. To process data by vector instructions, a vector must be loaded from memory and 

stored again after processing. It does not always take the same time to load a vector and 

write it to memory again. 

Loading and storing speed is highest for a continuous or a constant stride vector with odd 

stride (the interval between elements is an odd number). 

 

             

Figure 3  Constant stride vector 

A constant stride vector whose element interval expressed as m*2n is even, is loaded and 

stored as follows 

(m= odd number, n = 0, 1, 2, 3 ...). 

 4-byte data 

Load and store speeds are highest when n is 1 (interval: m * two elements) or less. When n 

is greater than 2, speed slows as n increases. 

 8-byte data 

Load and store speeds are highest when n is 0 (interval: m * one element). When n is greater 

than 1, speed slows as n increases. The fall-off in speed is due to bank contention. 

Since the speed of list vector loading and storing varies depending on bank contention, the 

speed is slower than for contiguous vector processing. 



 

 

The following points should be noted. 

 Array elements in a loop to be vectorized should be referenced so that the index variables, 

such as the loop index variables, appear in the first dimension wherever possible. The 

values of subscript expressions should increment or decrement by 1 (or an odd number) 

at each loop iteration. 

 

Example 

ORIGINAL OPTIMIZED 

REAL,DIMENSION (100,100) :: A, B, C 

     : 

     : 

DO I=1,N 

     DO J=1,N 

     A(I,J)=B(I,J)+X*C(I,J) 

     END DO 

END DO 

REAL, DIMENSION (100,100) :: A, B, C 

     : 

     : 

DO J=1,N 

     DO I=1,N 

       A(I,J)=B(I,J)+X*C(I,J) 

     END DO 

END DO 

 If an index variable appears in the second dimension of a two-dimensional array (or a 

higher dimension, in general), the size of the first dimension should be longer in the 

array declaration. 

Example 

ORIGINAL OPTIMIZED 

REAL, DIMENSION (1024,1024) :: A, B 

    : 

    : 

DO K=1,N 

   S=S+A(I,K)*B(K,J) 

END DO 

REAL, DIMENSION (1056,1024) :: A, B 

    : 

    : 

DO K=1,N 

   S=S+A(I,K)*B(K,J) 

END DO 

 The index variable should appear in the first dimension if possible, and should increment 

or decrement by 1. 

 When an array is used as a list vector and it is referenced by the same subscript several 

times, the programmer should provide and use a work array, to transfer necessary data 

in advance. If necessary, data can be returned to the original array after processing. 

Example 

       = A(IX(I)) 

          :                      This array is referenced 

          :                      in the form of A(IX(I)) 

       = A(IX(I))                        repeatedly. 

          : 

          : 



 

 

 

      

DO I=1,N 

 WA(I)=A(IX(I)) 

END DO 

 

       =WA(I) 

          : 

          : 

       =WA(I) 

          : 

          : 

In this example, correct results are not obtained if there are definitions for A(IX(I)). Elements 

with different IXs can have the same value.  

4.2.8 Removing IF Statements 

By using the vector mask, compress, and expand functions, the compiler is able to vectorize 

loops that contain IF statements. When a loop is vectorized by masked vector operations, the 

execution time is the same as when they are not masked. See the following example. 

Example 1 Example 2 

ORIGINAL OPTIMIZED 

DO I=1,1000 

     IF(e)THEN 

          A(I)=B(I)*C(I) 

     END IF 

END DO 

DO I=1,1000 

     A(I)=B(I)*C(I) 

END DO   

The assignment statements in both examples take the same execution time. Additional time 

for generating a mask is also required in Example 1. Furthermore, if e is true only 1% of the 

time, multiplication and assignment are carried out only 10 times when the loop is not 

vectorized. However, it takes the time required for vector arithmetic on all 1000 elements 

when the loop is vectorized. This significantly reduces the effect of vectorization. 

The compress and expand functions avoid this problem. However, they do not raise the 

efficiency significantly, because it takes time for compression and expansion. For this reason, 

the compiler uses these functions only when several operations are carried out, such as when 

the loop contains intrinsic functions. 

Removing IF statements can raise the efficiency of vectorization. The following examples 

illustrate this. 

 



 

 

 Whenever IF statements are used to avoid unnecessary operations as shown, simply 

remove them. 

Example 1 Example 2 

DO I=1,N 

     IF(A(I).NE.0.0)THEN 

          D(I)=A(I)*(B(I)+C(I)) 

     ELSE 

          D(I)=0.0 

     END IF 

END DO 

DO I =1,N 

    D(I)=A(I)*(B(I)+C(I)) 

END DO   

 Move special processing, performed only at a particular iteration count, outside the loop. 

Example 1  

ORIGINAL SIMILAR TO ORIGINAL OPTIMIZED 

DO I=1,N 

     α 

     IF(I.EQ.K)THEN 

     β 

     END IF 

     γ 

END DO 

DO I=1,K-1 

     α 

     γ 

END DO 

I=K 

     α 

     β 

     γ 

DO I=K+1,N 

     α 

     γ 

END DO 

DO I=1,N 

α 

γ 

END DO 

I=K 

α 

β 

γ 

 Compression and expansion outside the loop and use of list vectors 

When IF statements are used to avoid unnecessary operations on irrelevant data, such as 

zeros in a sparse matrix, they can be removed. Use compression to do this by gathering only 

the relevant data in consecutive work array in advance. Arithmetic operations are performed 

on these work arrays in the loop, then the data from the work array are returned to the 

original array (expansion). 

 

 

 

 

 

 

 

 



 

 

Example 1 

ORIGINAL OPTIMIZED 

DO I=1,N 

      IF(A(I).NE.0.0)THEN 

          C(I)=A(I)*SIN(B(I)) 

          : 

          : 

     END IF 

END DO 

K=0 

DO I=1,N 

     IF(A(I).NE.0.0)THEN 

          K=K+1 

          IX(K)=I 

          AA(K)=A(I)   ! Compression 

          BB(K)=B(I) 

          : 

          : 

          END IF 

END DO 

 

DO I=1,K 

     CC(I)=AA(I)*SIN(BB(I)) 

     : 

     : 

END DO 

 

DO I=1,K 

     C(IX(I))=CC(I) 

     :                                   

Expansion 

     : 

END DO   

Another method is to generate vectors containing only the indexes of the relevant data (list 

vectors) without performing data compression and expansion. These vectors can then be 

used as subscripts directly in the loop. 

Example 2 

ORIGINAL OPTIMIZED 

DO I=1,N 

      IF(A(I).NE.0.0)THEN 

          C(I)=A(I)*SIN(B(I)) 

          : 

          : 

     END IF 

END DO 

K=0 

DO I=1,N 

   ! Generation of list vector 

   IF(A(I).NE.0.0)THEN  

      K=K+1               

      IX(K)=I 

   END IF 

END DO 

DO I=1,K 

C(IX(I))=A(IX(I))*SIN(B(IX(I))) 

: 

: 

END DO 



 

 

If the number of arithmetic operations on the compressed elements is significant, 

compression and expansion is more efficient. If the number is small, using list vectors is more 

efficient. Data compression and expansion should be performed before and after a block of 

processing, instead of at each loop. 

4.2.9 Avoiding Iterative Operations 

Iterative operations are vectorized by using special vector instructions, but these vector 

instructions, although faster than scalar instructions, are slower than other vector instructions. 

Therefore, they should be avoided whenever possible. 

Example 

ORIGINAL OPTIMIZED 

DO I=1,M          ! No vector iterative operation 

     DO J=1,N     ! Vector iterative operation 

          A(I,J+1)=X(I,J)-T(I,J)*A(I,J) 

     END DO 

END DO 

DO J=1,N        ! Vector iterative operation 

     DO I=1,M   ! No vector iterative operation 

          A(I,J+1)=X(I,J)-T(I,J)*A(I,J) 

     END DO 

END DO 

4.2.10 Avoiding Loop Division 

The compiler partially vectorizes loops that contain unvectorizable parts by dividing the loop 

before and after those parts. Dividing a loop leaves part of the loop unvectorized, lowers 

efficiency at each division point, and lowers the efficiency of the vectorized part. It is better 

to remove the cause of nonvectorization, so that the entire loop can be vectorized. If the 

unvectorizable parts cannot be removed, reduce the number of divisions either by gathering 

the unvectorizable parts into one block or by moving them at the end of the loop. The 

efficiency of vectorization is thus improved. 

4.2.11 Avoiding Loop Unrolling for Short Loops 

Loop unrolling lengthens the body of a loop by a factor of n, in order to reduce the iteration 

count to 1/n of its value. This technique is frequently used to gain speed. However, unrolling 

a vectorizable DO loop may lower efficiency by reducing the loop length or converting 

continuous vectors to noncontinuous vectors. Unrolling vectorizable short DO loops should 

be avoided. 

Example 

ORIGINAL OPTIMIZED 

DO I=1,97,3            ! Short Loop Length 

   S=S+A(I)*B(I)+A(I+1)*B(I+1) !Unrolling 

      & +(I+2)*B(I+2) 

END DO 

DO I=1,99 

    S=S+A(I)*B(I)      !No unrolling 

END DO 



 

 

Unrolling an outer loop that is not vectorized is generally effective, especially if it reduces the 

number of references to a memory area. 

Example 

ORIGINAL OPTIMIZED (Outer loop unrolling) 

DO J=1,100 

          DO I=1,N 

          X(I)=X(I)+A(I,K)*B(K,J) 

          END DO 

END DO 

DO J=1,99,2 

     DO I=1,N 

          X(I)=X(I)+ A(I,K)*(B(K,J)+ B(K,J+1)) 

     END DO 

END DO 

In this case, the count of load count and count of store for X(I) and the count of load for 

A(I,K) are halved by unrolling. 

4.2.12 Increasing Concurrency 

Vector addition, subtraction, multiplication, vector shift operations (including multiplying a 

real number by 2 or by 1/2), and logical operations can be executed in parallel. Thus, it is 

efficient to put as many of these operations together in the same loop as possible. 

In general, complex loops result in higher overall performance as compared to relatively 

simple loops. 

Example 

ORIGINAL OPTIMIZED  

DO I=1,N 

     A(I)=B(I)+C(I) 

END DO 

DO I=1,N 

     X(I)=Y(I)*Z(I) 

END DO 

DO I=1,N 

     A(I)=B(I)+C(I) 

     X(I)=Y(I)*Z(I) 

END DO 

To make instruction reordering by the compiler efficient, as many arithmetic operations as 

can be executed in parallel should be performed. 

4.2.13 Avoiding Arithmetic Division 

Since vector division is slower than other vector arithmetic operations, minimize the number 

of divisions by converting them to multiplication or use algorithms that do not contain division. 

4.2.14 Using Vectorization Options and Directives 

Effective use of vectorization options and vectorization directives can raise the efficiency of 

vectorization.  

 novector directive: The novector directive should be used in the following cases. 



 

 

(1) The loop is so short that vectorization would cause a loss rather than a gain in 

speed. 

(2) Most of the loop is controlled by IF statements and is only rarely executed. 

Vectorization of such a loop by the masked vector function would cause a loss 

rather than a gain in performance. 

(3) When a loop has an out-of-loop branch and is vectorized, only those arithmetic 

operations participate in the vectorization that occur before the branch-exit 

statement. If the branch-statement occurs at an early iteration, the loop 

practically behaves like a short loop and vectorization may result in reduced 

performance. novector may be preferred in such cases. 

Example 

!NEC$ NOVECTOR 

DO I=1,1000 

    IF(A(I)-B(I)LT.1.0E-10) EXIT 

    Z(I)=A(I)-B(I) 

END DO 

(4) When a program is executed in scalar mode to test the effect of vectorization on 

accuracy. 

(5) When a program is executed in scalar mode to observe the frequency or locations 

of exceptions.  

 loop_count directive:  

In vectorization, the compiler needs to know the iteration count of a loop for the following 

purposes. 

(1) To determine the size of an array. 

(2) When a loop is created to replace variables defined (or referenced) that extend 

across a division point. 

(3) When a loop is vectorized by dividing the loop. 

(4) To generate efficient vector instructions when the iteration count is less than the 

vector register length. 

(5) To perform efficient register allocation on the basis of the iteration count.  

(6) When the iteration count cannot be determined, the compiler makes one of the 

following assumptions. 



 

 

(7) If the -floop-count option of the compiler directive specifies the iteration count 

explicitly, that value is used as the iteration count. 

‒ If the -floop-count option specifies the iteration count explicitly, that value is 

used as the iteration count. If the value determined by the next method is less 

than this value, the value determined by the next method is used. 

(8) When the upper limit of the iteration count can be inferred from an array 

declaration appearing in a loop, that value is used. A dummy array, whose highest 

dimension is declared as 1, is processed as an assumed-size array declarator. If 

the compile time option or the vectorization directive NOASSUME is used, array 

declarations are not used in iteration-count assumption. 

(9) If the iteration count cannot be determined by these methods, 5000 is assumed.  

The iteration count assumed by the compiler is shown in the vectorization diagnostic message. 

In the following example a loop count of 50 is assumed from the size of the dimension 

corresponding to the DO variable, I, in the array declaration. However, if a value less than 50 

was specified by the –floop-count option, that value would be used. 

Example 

REAL A(100,100),B(200,100),C(50,100) 

    : 

DO I=1,N 

     A(I,J)=B(I,J)*C(I,J) 

ENDDO 

The upper limit of the iteration count cannot be inferred from the array declaration. Therefore, 

if the -floop-count=n option is specified, that value is used; if not, 5000 is assumed. See the 

following example. 

Example 

SUBROUTINE SUB (A,B,C,L,M,N) 

REAL A (L,M),B(100,*),C(N,1),IX(L) 

   : 

   : 

DO I=1,K 

     A(I,J)=B(IX(I),J)*C(J,I) 

ENDDO 

If the actual iteration count is checked during execution and found to be greater than the 

value assumed by the compiler, error is output. 

 verror_check and noverror_check directive:  

When the noverror_check option is valid, no check is performed for invalid arguments. As a 



 

 

result, less time is required for calculating the value of the function. The noverror_check 

option must be used only when no valid parameter will be passed to the function. 

4.2.15 Other Effective Techniques 

 Avoiding the use of POINTER attribute 

If the POINTER attribute is used, the compiler cannot fully analyze the dependency 

between definition and reference and may assume that the dependency cannot be 

determined, when in fact vectorization is possible. For this reason, the POINTER attribute 

should be avoided. 

 NOOVERLAP compiler directive is supplied to declare that variables do not associate with 

others. 

Example 

REAL,DIMENSION(:),POINTER::X 

REAL,DIMENSION(100),TARGET::Y 

DO I=l,N 

X(I)=Y(I)*2.0 

ENDDO 

Since X may be associated with Y, the compiler assumes data dependency in the loop. 

Therefore, the loop is unvectorized. If X is never associated with Y, you can specify the 

following compiler directive: 

!NEC$ NOOVERLAP(X,Y) 

Then the compiler will vectorize the loop. 

 Use variables for work space instead of using arrays. 

Example 1 Example 2 

DO I=1,N 

     X=A(I)+B(I) 

     Y=C(I)-D(I) 

     E(I)=S*X+T*Y 

     F(I)=S*Y+T*X 

END DO 

DO I=1,N 

      WX(I)=A(I)+B(I) 

      WY(I)=C(I)-D(I) 

      E(I)=S*WX(I)+T*WY(I) 

      F(I)=S*WY(I)-T*WX(I) 

 END DO 

In Example 2, WX and WY are loaded and stored in the loop. On the other hand, in Example 

1, vector registers are assigned to X and Y and they are not loaded and stored in the loop. 

Thus, Example 1 is more efficient than Example 2. 

 Additional features 

When the basic conditions for vectorization are satisfied, the compiler performs as much 

vectorization as possible by transforming the source, especially loops and using special vector 

operations of the Vector Engine. 



 

 

4.2.16 Vectorization by Statement Replacement 

Consider replacement of statements if the conditions for vectorization are not satisfied in a 

loop structure by variable or array element definitions and references.  

Example 1 Example 2 Example 3 

DO  I=1,N 

  A(I)=B(I)*C(I)  !definition  

  E(I)=D/A(I+1)  !reference 

END DO 

                

DO I=1,N 

  E(I)=D/A(I+1)   !definition 

  A(I)=B(I)*C(I)   !reference 

END DO 

DO I=1,N 

  B(I)=A(I)*C(I)  !definition 

 A(I+1)=D+E(I)   !reference 

END DO 

                

DO I=1,N 

  A(I+1)=D+E(I)   !definition 

 B(I)=A(I)*C(I)    !reference 

END DO 

DO I=1,N 

  A(I)=B(I)*C(I)  !definition 

 A(I+1)=X*Y(I)   !reference 

END DO 

                

DO I=1,N 

  A(I+1)=X*Y(I)   !definition 

 A(I)=B(I)*C(I)    !reference 

END DO 

4.2.17 Vectorization Using Work Vectors 

When defining and referencing a variable or array element that does not satisfy vectorization 

conditions in a loop structure, if the definition precedes the reference, and the statement 

replacement (explained in Section 5.1.2.2) is impossible, vectorization conditions are satisfied 

by saving array values in a work vector. See the following example. 

 

Example  

DO  I=1,N                !definition 

     A(I)=B(I)*C(I)      !reference 

     B(I)=T*B(I) 

     E(I)=B(I)+A(I+1) 

END DO 

       

DO  I=1,N 

     w(I)=A(I+1)       ! work vector w 

     A(I)=B(I)*C(I)     ! definition 

     B(I)=T*B(I)        ! Reference 

     E(I)=B(I)+w(I) 

END DO 

 

4.2.18 Macro Operations 

Although patterns like the following do not satisfy the vectorization conditions for definitions 

and references, the compiler recognizes them to be special patterns and performs 

vectorization by using vector instructions. 



 

 

 Sum or inner product 

The following shows a sum or inner product example. 

       S = S ± <exp> 

       where <exp> is an expression. 

A sum or inner product like the following example that consists of multiple statements is also 

vectorized. 

       t1 = S ± <exp1> 

       t2 = t1 ± <exp2> 

            : 

       S = tn ± <expn> 

 Product 

The following shows a product example. This example cannot be vectorized if S is a complex 

type. 

     S = S* <exp> 

A product like the following example that consists of multiple statements can be vectorized. 

     t1 = S  * <exp1> 

     t2 = t1 * <exp2> 

          : 

     S=tn * <expn> 

 

 Iteration 

Iterations shown in the following examples are vectorized unless X is a complex type. 

      X(I)=<exp> ± X(I-1) 

      X(I)=<exp> * X(I-1) 

      X(I)=<exp1> ± X(I-1) * <exp2> 

      X(I)=(<exp1> ± X(I-1)) * <exp2> 

An iteration like the following example consists of multiple statements can be vectorized. 

             t=<exp1> ± X(I-1) 

             X(I)=t * <exp2> 

 

 

 

 



 

 

 Function type 

Example  

DO  I=1,N 

     XMAX=MAX(XMAX,X(I)) 

END DO 

 

DO  I=1,N 

     XMIN=MIN(XMIN,X(I)) 

END DO 

 IF type 

(1) Finds the maximum or minimum value only. 

Example  

DO  I=1,N 

     IF(XMAX.LT.X(I))  THEN 

        XMAX=X(I) 

     END IF 

END DO 

 

(2) Finds the maximum or minimum value and its index. 

Example  

DO  I=1,N 

     IF(XMIN.GT.X(I)) THEN 

        XMIN=X(I) 

        IX=I 

     ENDIF 

END DO 

 

(3) Finds the index only. 

Example  

DO  I=1,N 

     IF(X(IX).LT.X(I)) THEN 

          IX=I 

     END IF 

END DO 

 

 

 

 



 

 

(4) Finds the maximum or minimum value, and its index. 

Example  

DO  I=1,N 

     IF(XMIN.GT.X(I, J) ) THEN 

          XMIN=X(I, J) 

          IX=I 

          IY=J 

     END IF 

END DO 

 

(5) Compares absolute values. 

Example  

DO  I=1,N 

     IF(ABS(XMIN).GT.ABS(X(I)))  THEN 

          XMIN=X(I) 

     END IF 

END DO 

 Search 

(1) A loop that searches for an element that satisfies a given condition is vectorized. 

Example  

DO  I=1,N 

     IF(X(I).EQ.0.0)  THEN 

          EXIT 

     END IF 

END DO 

All of the following conditions must be satisfied. 

‒ This is the innermost loop. 

‒ There is just one branch out of the loop. 

‒ The condition for branching out of the loop depends on repetition of the loop. 

‒ There must not be an assignment statement to an array element before the 

branch out of the loop. 

‒ All basic conditions for vectorization are satisfied except for not branching out 

of the loop.  

 

 Compression 

A loop for compressing elements that satisfy a given condition is vectorized. 



 

 

Example  

J=0 

DO  I=1,N 

     IF(X(I).GT.0.0)  THEN 

          J=J+1 

          Y(J)=Z(I) 

     END IF 

END DO 

 Expansion 

A loop for expanding values to elements that satisfy a given condition is vectorized. 

Example  

J=0 

DO  I=1,N 

     IF(X(I).GT.0.0)  THEN 

          J=J+1 

          Z(I)=Y(J) 

     END IF 

END DO 

 

4.2.19 Examples of Vectorization 

 Simple array expressions and loops 

Example 1 

A(1:N)=B(1:N)+X*C(1:N) 

 

Example 2 

DO  I=1,100 

     A(I)=B(I)+X*C(I) 

END  DO 

 

The array expression and DO loop in the examples are expanded using a vector multiplication 

instruction and a vector addition instruction. 

         Ti    X * Ci     (i=1, 2,…, N) 

         Ai    Bi + Ti    (i=1, 2,…, N) 

 

 

 

 

 



 

 

 Multidimensional array expression 

The first dimension of an array expression of two or more dimensions is vectorized. 

Example  

A(1:N, 1:M) = B(1:N, 1:M)+X*C(1:N, 1:M) 

      

DO  j=1, M 

     Tij   X * Cij          (i=1, 2,…, N) 

     Aij   Bij+ Tij          (i=1, 2,…, N) 

END DO    

 Masked array assignment 

A masked array assignment is vectorized using a vector mask generation instruction 

that generates a bit vector (mask vector) whose values are 1 or 0 depending on the 

truth of a condition expression for each element. A masked vector operation 

instruction is also generated that executes an operation only on elements 

corresponding to a 1 bit in the mask vector. 

Example 1 

WHERE(C(1:N).NE.0.0)   A(1:N)=B(1:N)/C(1:N) 

 

Mi    1  (if   Ci ≠ 0.0) 

        0   (if  Ci = 0.0)      (i=1, 2,…, N) 

 

Ai    Bi / Ci  (if Mi = 1)    (i=1, 2, …, N) 

 

Mi is a bit vector used in vector operation mask control. 

 
Example 2 

WHERE(C(1:N).EQ.0.0) 

     A(1:N)=B(1:N)+D(1:N) 

ELSEWHERE 

     A(1:N)=B(1:N)*C(1:N)+D(1:N) 

ENDWHERE 

M1i    1 (if Ci ≠ 0.0) 

         0 (if Ci = 0.0)  (i=1, 2,…, N) 

Ai    Bi * Ci (if M1i = 1)  (i=1, 2,…, N) 

M2i  NOT M1i             (i=1, 2,…, N) 

Ti   Bi * Ci (if M2i = 1)  (i=1, 2,…, N) 

Ai   Ti + Di (if M2i = 1)  (i=1, 2,…, N) 

 

M1i and M2i are bit vectors used in vector operation mask control. 

Mi = 1 (if Ai ≥ 0) 

     0 (if Ai < 0) 
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Figure 4  Vector Mask Generation Instruction 

 

 
Figure 5  Masked Vector Operation Instruction 

 

 Loops containing IF constructs 

The method of vectorizing a loop that contains an IF construct varies depending on 

the form of the condition expression in the IF statement. If the value of the condition 

expression is invariant within the loop, the IF statement is expanded without change. 

Example 1 

DO  I=1, 100 

     A(I)=B(I)*C(I) 

     IF(ISW.EQ.1) THEN 

          C(I)=D(I)+E(I) 

     ENDIF 

END DO 

 

Ai  Bi * Ci          (i=1, 2,…, N) 

if  ISW.EQ.1  then 

     Ci  Di + Ei       (i=1, 2,…, N) 

end if 

When the value of the condition expression depends on the loop iteration, vectorization 



 

 

uses a vector mask generation instruction and a masked vector operation instruction. 

See masked assignment previously shown. 

Example 2 

DO  I=1,N 

     IF(C(I).NE.0.0)  THEN 

          A(I)=B(I)/C(I) 

     END IF 

END DO 

 

Mi    1 (if Ci ≠ 0.0) 

        0 (if Ci = 0.0)          (i=1, 2,…, N) 

Ai   Bi / Ci (if Mi = 1) (i=1, 2,…, N) 

Mi is a bit vector used in vector operation mask control. 

Vectorization is also possible when the IF construct is nested. 

Example 3 

DO  I=1,N 

     IF(X(I).NE.0.0)  THEN 

          IF(Y(I).GE.0.0)  THEN 

               Z(I)=Y(I)/X(I) 

          ELSE 

               Z(I)=0.0 

          ENDIF 

     ENDIF 

END DO 

 

M1i   1 (if Xi ≠ 0.0) 

         0 (if Xi = 0.0)           (i=1, 2,…, N) 

M2i   1 (if Yi ≥ 0.0 and M1i = 1) 

         0 (if Yi < 0.0 or M1i = 0) (i=1, 2,…, N) 

M3i   M2i, AND M1i                   (i=1, 2,…, N) 

Zi    Yi / Xi (if M2i = 1)            (i=1, 2,…, N) 

Zi    0.0(if M3i = 1)           (i=1, 2,…, N) 

 

M1i, M2i, and M3i are bit vectors used in vector operation 

mask control 

Array expressions and loops containing intrinsic function references 

When there is a reference to an intrinsic function that is subject to vectorization in an 

array expression or loop, it is expanded into a series of instructions that reference a 

vector version intrinsic function that takes vector data as arguments and returns 

function values using vector data. 

 



 

 

Example 1 

A(1:N)=SQRT(X(1:N)*X(1:N)+Y(1:N)) 

 

Example 2 

DO  I=1, N 

     A(I)=SQRT(X(I)*X(I)+Y(I)*Y(I)) 

ENDDO 

Either of the two previous examples can be expanded into the following series of 

instructions. 

Ti    Xi * Xi +Yi * Yi         (i=1, 2,…, N) 

Ai    VSQRT (Ti)             (i=1, 2,…, N) 

VSQRT is the vector version SQRT function. 

If the intrinsic function reference is within an IF condition, a series of instructions (that 

compress the vector data of the arguments using a vector compression instruction) 

call the vector function using the compressed vector data as arguments, and expand 

the vector data of the function value to vector data of the original size using a vector 

expansion instruction.  

 
Figure 6  Vector Compression and Expansion 

 

Some intrinsic functions are expanded into a series of vector instructions that compute 

direct function values. 

 

Example 1 

IX(1:N)= IAND (IY(1:N),IZ(I:N)) 

 

 



 

 

Example 2 

DO I=1,N 

     IX(I)= IAND (IY(I), IZ(I)) 

END DO 

Either of the previous two examples can be expanded into the following sequence of 

instructions. 

Example 3 

IXi  IYi  &  IZi          (i=1, 2,…, N) 

 Loops containing index variables 

If an index variable is used anywhere within a loop except in an array subscript 

expression, it is vectorized by generating vector data for a number sequence. 

Example 

DO  I=1,N 

     X(I)=I 

ENDDO 

 

Ti   Ii                        (i=1, 2,…, N) 

Xi   float(Ti)                 (i=1, 2,…, N) 

Ii is vector data in which the value of element i is i. 

 Vector subscripts 

A reference in an array expression to a whole array or an array section (in which 

section subscripts are subscript triplets) or a reference inside a loop to an array 

element with linear subscripts is treated as a sequence vector or a constant stride 

vector. 

A reference to an array section in an array expression (in which the section subscripts 

are vector subscripts) or a reference to an array element in a loop with subscripts that 

are nonlinear subscripts is treated as an indirect index vector. It is expanded into a 

series of vector instructions in which vector gather and scatter instructions are used.  



 

 

 
Figure 7  Vector Gather and Scatter Instructions 

The following are examples of vector and nonlinear subscripts. 

Example 1: vector subscripts  

X(IX(1:N))=Y(IX(1:N)) * Z(1:N) 

 

T1i    Y(IXi)                  (i=1, 2,…, N) 

T2i    T1i * Zi                (i=1, 2,…, N) 

X(IXi)   T2i                   (i=1, 2,…, N) 

 

Example 2: nonlinear subscripts  

DO  I=I, N 

     X(I * I)=Y(I * I) + Z(I) 

END DO 

 

T1i    Ii                  (i=1, 2,…, N) 

ITi    T1i * T1i          (i=1, 2,…, N) 

T2i    YITi                (i=1, 2,…, N) 

T3i    T2i * Zi            (i=1, 2,…, N) 

XITi   T3i                 (i=1, 2,…, N) 

Ii is vector data in which the value of element i is i. 

 

4.2.20 Partial Vectorization 

4.2.21 Code-Related Optimization 

Code-related optimizations are designed to eliminate operations that are not needed as much 

as possible by analyzing the flow of control and the flow of data in a program. They shorten 

the execution time of a program by keeping the operations in a loop to the minimum 



 

 

necessary and replacing an operation with an equivalent faster operation whenever possible. 

Optimizations related to vectorized code are shown as follows. 

 Making multiplication and division special operations 

The operation processor provides instructions that execute doubling and halving for 

vector data, and using these effectively makes fast execution possible. 

Example  

ORIGINAL VECTORIZATION HALF INSTRUCTION 

DO  I=1,N 

   X (I) = A (I) * 0.5*B  

(I) * C (I) 

END DO 

 T1i     Ai * 0.5 

 T2i     Bi * Ci 

 Xi      T1i * T2i 

 T1i     Half  (Ai) 

 T2i     Bi * Ci 

 Xi      T1i * T2i 

In this example, in order to use the multiplication/logic pipeline with each operation, 

Xi  T1i*T2i cannot be executed until T1i Ai*0.5 or T2i Bi*Ci ends (the 

addition/shift and multiplication/logic pipelines each are two at a time). However, 

by replacing T1i  Ai*0.5 with T1i  Half(Ai), it is possible to begin at the same 

time through      Xi T1i *T2i. 

This is because the operation pipeline used in the half instruction and the 

multiplication pipeline are executed in parallel. 

 Deleting common expressions 

If a given computation has already been performed in the same program, that 

computation is removed and replaced by a reference to the result of the previous 

computation in order to avoid an unnecessary computation. This is called common 

expression deletion. 

Common expression deletion is also performed on vector operations. 

Example 

ORIGINAL VECTORIZATION HALF INSTRUCTION 

DO  I=1,N 

     X(I)=A(I) * (B + SIN (C(I))) 

     Y(I)=D(I) + (SIN (C(I)) + B) 

END DO 

T1i    B+SIN  (Ci) 

Xi     Ai * T1i 

T2i   SIN (Ci) + B 

Yi     Di + T2i 

T1i    B+SIN(Ci) 

Xi     Ai * T1i 

Yi     Di + T1i 

Common expression deletion decreases the computation volume and number of 

references to intrinsic functions and shortens execution time. 

 

 



 

 

 Extracting scalar operations 

Although the operation processor can operate at high speed using operations between 

scalar data and vector data and vector instructions, operating on scalar data is more 

efficient than operating on scalar data and vector data. When an expression is 

evaluated using the normal evaluation sequence, a vector operation is sometimes 

required where a scalar operation could be used. The compiler is designed to shorten 

execution time by extracting such scalar operations and causing them to operate at 

the same time. 

Example:  

ORIGINAL SCALAR OPERATION 

EXTRACTION 

VECTORIZATION 

DO  I=1, N           

   X(I) = A * Y (I) * B                 

END DO         

 

Normal vectorization 

   TiA*Yi   (vector operation) 

   XiTi*B   (vector operation)      

DO  I=1, N 

     X(I) = A * B * Y (I) 

END DO 

T = A * B   (scalar operation) 

Xi  T *Yi (vector operation) 

In this example, when normal vectorization is performed, vector multiplication of scalar 

data A and vector data Y and vector multiplication of the resulting vector data T and 

scalar data B are executed. However, when scalar operation extraction is performed, 

first scalar multiplication of scalar data A and B is executed and then vector 

multiplication of the resulting scalar data T and vector data Y is executed. Because of 

this, the number of vector operations is one less and the execution time is shortened. 

This optimization is not performed when the compile time option -floop-nointerchange 

is specified. 

 Making division multiplication 

Since vector multiplication instructions are faster than vector division instructions, 

making division multiplication shortens execution time. 

Example 1  

ORIGINAL VECTORIZATION 

DO I=1, N 

  A(I)=B(I)/X 

ENDDO  

T    1.0/X 

Ai   Bi * T 

 

 

 



 

 

Example 2  

ORIGINAL VECTORIZATION 

DO  I=1, N 

     X(I)=A(I)/B(I)/C(I) 

ENDDO 

Ti   Bi * Ci 

Xi   Ai / Ti 

This optimization is not performed when the compile time option -novwork is specified. 

 Optimizing mask operations 

Using masked operations makes vectorization possible for a DO loop containing an IF 

statement. However, if IF statements are nested to make a complex condition, identical 

operations may arise between masks, lowering execution efficiency. In order to avoid 

this, optimization is performed as follows for mask operations. 

(1) Process identical operations as common expressions 

In this example, A(I).GT.0.0 is processed as a common expression. 

Example 

ORIGINAL VECTORIZATION 

DO  I=1, N 

   IF (A(I).LE.0.0)  THEN 

        X(I)=A(I) * B(I) 

   END IF 

   Y(I)=A(I) +B(I) 

   IF (A(I).GT.0.0 AND. B(I). EQ.0.0) THEN 

       Z(I)=A(I) 

  END IF 

END DO 

M1i  0: if Ai > 0.0 

        1: if Ai ≤ 0.0 

 

Xi   Ai * Bi (if M1i = 1) 

Yi    Ai + Bi 

 

M2i   0:  if Bi ≠ 0.0 

        1: if Bi =  0.0 

 

M3i  M1i  AND M2i 

Zi    Ai        (if  M3i =1) 

(2) Common expression processing for nested IF statements 

In this example, Y(I).GT.0.0 is processed as a common expression. 

Example 

ORIGINAL VECTORIZATION 

DO  I=1, N 

     IF  (X(I). GT. 0.0)  THEN 

          IF (Y(I). GT. 0.0) THEN 

               Z (I) = Y(I)/X (I) 

          ELSE 

               Z (I) = 0.0 

          END IF 

     ELSE 

M1i    0:  if Xi > 0.0 

          1: if Xi ≤  0.0 

 

M2i    0:  if Yi > 0.0 

          1: if Yi ≤ 0.0 

 

M3i     M1i  AND M2i 

Zi     Yi / Xi (if M3i = 1) 



 

 

          IF (Y(I). GT. 0.0) THEN 

               Z (I) = X(I)/Y(I) 

          END IF 

     END IF 

END DO 

M4i    M1i  AND M2i 

Zi     0. 0 (if M4i = 1) 

M5i    M1i  AND M2i 

Zi     Xi / Yi (if M5i = 1) 

(3) Eliminating unneeded last value saves 

When vectorizing the following DO loop, in order to process the variable X by 

considering it as an array, the value of X for I=N (last value) must be moved from the 

area that made an array to the area of X. However, if X is not referenced after execution 

of the DO loop, the last value of X need not be saved. In such cases, the instruction to 

save the last value is deleted to shorten execution time. 

Example 

DO  I=1, N 

     X=A(I) 

     B (I) = C (I) * X 

END DO 

(4) Code clean-up 

Deletion of simple assignments and deletion of unneeded code are also performed for 

vectorized code.  

4.2.22 Loop Transformations 

Based on program structures, the most time consuming parts of a program are loops. Most 

high performance application work iteratively, giving rise to the need of optimization of the 

loop performance. Depending on the target architecture, the goal of loops transformations 

are: 

 improve data reuse and data locality 

 efficient use of memory hierarchy 

 reducing overheads associated with executing loops 

 instructions pipeline 

 maximize parallelism 

Understanding of the underlying system becomes necessary in order to identify the attributes 

for optimization. However, some general optimization techniques are presented below. Loop 

transformations can be performed at different levels by the programmer, the compiler, or 

specialized tools. At high level, some well-known transformations are commonly considered. 



 

 

The compiler performs various loop transformations in order to improve performance of the 

vector code. 

 

 Loop Collapse 

A loop collapse is effective in not only reducing the execution time for controlling 

iteration of the outer loop but also in increasing the loop iteration count and 

improving the efficiency of vector instructions.  

ORIGINAL COLLAPSED 

DO N = 1, NMAX 

  DO K = 1, KMAX 

    ARR(N,K) = 0.D0 

  END DO 

END DO 

DO N = 1, NMAX*KMAX 

  ARR(N,0) = 0.D0 

END DO 

 

ORIGINAL COLLAPSED 

Example 1 (in C)  

int a[100][300]; 

 

for (i = 0; i < 300; i++) 

   for (j = 0; j < 100; j++) 

      a[j][i] = 0; 

int a[100][300]; 

int *p = &a[0][0]; 

 

for (i = 0; i < 30000; i++) 

   *p++ = 0; 

Example 2 (in C)  

float a[100][100][100], b[100][100][100]; 

for (i = 1; i < n-2; i++) { 

   for (j = 0; j < 100; j++) { 

      for (k = 0; k < 100; k++) { 

         a[i][j][k] = b[i][j][k]; 

      } 

   } 

} 

float a[100][100][100], b[100][100][100]; 

 

for (i =0;i <n*10000-30000;i++) { 

    a[1][0][i] = b[1][0][i]; 

} 

 

 

ORIGINAL COLLAPSED 

Example 1 (in FORTRAN)  

REAL,DIMENSION(10,30)::A,B,C  

DO J=1,30  

  DO I=1,10  

    A(I,J)=B(I,J)+C(I,J) 

  END DO  

END DO 

REAL,DIMENSION(10,30)::A,B,C  

DO IJ=1,30*10 

  A(IJ,1) = B(IJ,1) + C(IJ,1) 

ENDDO 



 

 

Example 2 (in FORTRAN)  

REAL,DIMENSION(10,30)::A,B,C  

do l = 2, lmax 

  do k = 1, lmax - 1 

    do i = 1, imax 

      ARR(i, k, l) = max(ARR(i, k, l), 0.d0) 

      ARR(i, k, l) = min(ARR(i, k, l), 1.d0) 

    end do 

  end do 

end do 

do l = 2, lmax 

  do k = 1, lmax*imax - imax                                            

    temp = ARR(k,1,l)                                         

    temp = max(temp, 0.d0)                    

    ARR(k,1,l) = min(temp, 1.d0)              

  enddo                                                              

end do 

The compiler automatically collapses a loop if: 

 The loops are too tightly nested, i.e. each DO loop and the DO loop nested 

immediately within it must look as shown in Example 1. 

Example 1:  

loop nest is tightly nested 

Example 2:  

loop nest is not tightly nested 

Example 3:  

loop nest is not tightly nested 

DO K=1,10 

  DO J=1,20 

    DO I=1,30 

      A(I,J,K)=B(I,J,K)*C(I,J,K) 

    ENDDO 

 ENDDO 

ENDDO 

DO K=1,10 

  D(K)=0.0 

  DO J=1,20 

     DO I=1,30 

        A(I,J,K)=B(I,J,K)*C(I,J,K) 

     ENDDO 

     X(K,J)=Y(K,J)+Z(K,J) 

  ENDDO 

ENDDO 

DO K=1,10 

  DO J=1,20 

     DO I=1,10 

         S(I,J,K)=T(I,J,K)*U(I,J,K) 

     ENDDO 

     DO I=1,30 

         A(I,J,K)=B(I,J,K)*C(I,J,K) 

     ENDDO 

  ENDDO 

ENDDO 

 The loop bounds must be identical to the array bounds for the first N-1 dimensions, 

where N is the number of dimensions to be collapsed. When the iteration count of a loop 

depends on the iteration count of its outer loop, the loop is not collapsed. 

Example:  

This loop nest is not collapsed. 

DO K=1,20 

  DO J=K,100 

    DO I=1,100 

      A(I,J,K)=B(I,J) 

    ENDDO 

  ENDDO 

ENDDO 

 

 



 

 

 In the subscription of the array reference, each index of loops is appeared with the 

same form and the same order. 

Example: Data dependencies are unchanged after the loop collapsed. 

ORIGINAL LOOP COLLAPSED 

REAL,DIMENSION(10,30)::A,B,C 

DO J=1,30 

     DO I=1,10 

          A(I,J)=B(I,J)+C(I,J) 

     ENDDO 

ENDDO 

REAL,DIMENSION(10,30)::A,B,C 

REAL,DIMENSION(300)::aa,bb,cc 

EQUIVALENCE (A,aa),(B,bb),(C,cc) 

DO ii=1,300 

  aa(ii)=bb(ii)+cc(ii) 

ENDDO 

 All arrays that are indexed by the loops are neither a pointer nor an assumed shape 

array. 

When a pointer or an assumed shape array is indexed by the loop, the compiler does 

not automatically collapse the loops, and can neither automatically collapse the loops 

containing an automatic array nor an allocatable array. If you specify the compiler 

directive COLLAPSE, then the compiler collapses the loops even if such arrays exist in 

the loops. 

 Loop Interchange 

Loop interchange is performed in order to remove data dependency or improve performance 

of vector instructions. 

Loop Interchange is the process of interchanging the loop indexes of inner and outer loops in 

the case of nested loops. This is mostly used to improve cache behavior. In practice, the 

innermost loop should (only) index the right-most array index expression in case of row-

major storage like in C.  

Loop interchange can also expose parallelism. If an inner-loop does not carry a dependency 

(entry in direction vector equals ‘=‘), this loop can be executed in parallel. The granularity of 

the parallel loop can be increased by moving the inner loop outward. 

ORIGINAL INTERCHANGED 

Example 1 (in C) 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++)          ! Unvectorized Loop 

   B[i][j] = f(A[j],B[i][j-1]); 

for (j=0; j<M; j++) 

 for (i=0; i<N; i++)          ! Vectorized Loop 

   B[i][j] = f(A[j],B[i][j-1]); 

Example 2 (in C) 

for (i=0; i <n; i++) { 

  for (j=0; j <n; j++) { 

    a[j][i+1] = 2.0*a[j][i-1]; 

  } 

for (j=0; j<n; j++){ 

  for (i=0; i<n; i++){ 

    a[j][i+1] = 2.0*a[j][i-1]; 

  } 



 

 

} } 

 

ORIGINAL INTERCHANGED 

Example 1 (in FORTRAN)  

DO J=1,M   

   DO I=1,N 

      A(I+1,J) = A(I,J) + B(I,J) 

   ENDDO 

ENDDO 

DO I=1,N   

   DO J=1,M 

      A(I+1,J) = A(I,J) + B(I,J) 

   ENDDO 

ENDDO 

Example 2 (in FORTRAN)  

DO I=1,N 

  DO J=1,M 

    A(I,J)=B(I,J)+C(I,J) 

  ENDDO 

ENDDO 

DO J=1,M 

  DO I=1,N 

    A(I,J)=B(I,J)+ C(I,J) 

  ENDDO 

ENDDO 

The compiler automatically exchanges the outer loop with the inner if: 

The loops are tightly nested. 

Interchanging loops would enable the loop to be vectorized, increase the loop length, or 

shorten the stride of array references. 

Data dependencies are unchanged after the loop interchange. 

Example: Data dependency is removed 

ORIGINAL LOOP INTERCHANGED 

DO J=l,100 

     DO I=1,50 

          A(I+l,J)=A(I,J)*B(I,J) 

     ENDDO 

ENDDO 

DO I=1,50 

     DO J=1,100 

          A(I+l,J)=A(I,J)*B(I,J) 

     ENDDO 

ENDDO 

 

Example: Longer loop length and shorter stride of array references. 

ORIGINAL LOOP INTERCHANGED 

DO I=1,100 

     DO J=1,10 

          A(I,J)=A(I,J)*B(I,J) 

     ENDDO 

ENDDO 

DO J=1,10 

     DO I=1,100 

          A(I,J)=A(I,J)*B(I,J) 

     ENDDO 

ENDDO 

 Alternate code generation 

When there is a choice on vectorized loop, the compiler generates two versions of the loop 

together with a run-time test to choose between them. 

Vectorization threshold length run-time testing 

When the compiler cannot determine a loop length, it generates two versions of the loop 



 

 

together with a run-time test. If the loop length is greater than or equal to the vectorization 

threshold length, the vector version executes. Otherwise, the scalar version executes. 

Vectorization threshold length can be specified by compiler option -mvector-threshold. 

Example: Longer loop length and shorter stride of array references. 

ORIGINAL LOOP TRANSFORMED 

DO I=1,N 

     A(I)=B(I)+C(I) 

ENDDO 

IF(N.LT.5) THEN 

     DO I=1,N               

         A(I)=B(I)+C(I)    !Scalar 

     ENDDO                   

ELSE 

    A(1:N)=B(1:N)+C(1:N)  !Vector 

ENDIF 

Data dependency run-time testing 

When the data dependency is unclear because of variables in array subscripts, the compiler 

generates two versions of the loop together with run-time test. If the array has no data 

dependency, the vector version will execute; otherwise, the scalar version or the partial 

vectorized version, i.e., a part of the loop body which references the array is not vectorized, 

will execute. 

    Example: 

Example: If K> 0 or K<-10, A(I) does not conflict with A(I+K). 

ORIGINAL LOOP TRANSFORMED 

DO I=N,N+10 

     A(I)=A(I+K)+B(I) 

ENDDO 

IF(K.GE.0 OR.  K.LE.-11) THEN 

     A(N:N+10)=A(N+K:N+10+K)+B(N:N+10)  ! 

Vector 

ELSE 

     DO I=N,N+10                            

       A(I)=A(I+K)+B(I)                    ! Scalar 

     ENDDO                                  

ENDIF 

Short reduction loop run-time testing 

When a loop length is less than or equal to the maximum vector register length (short loop), 

the compiler is able to generate a more simple and efficient vector code for a reduction macro 

operation such as sum, inner product, product or maximum/minimum value. 

If the iteration count of the loop including those macro operations is unknown, the compiler 

generates two versions of the loop together with a run-time test. If the loop length is less 

than or equal to the maximum vector length, the vector code optimized for a short loop 

executes; otherwise, the normal vector code executes. 

 



 

 

Example 

ORIGINAL LOOP TRANSFORMED 

DO I=1,N 

   S = S + X(I) 

ENDDO 

! Is N less or equal to maximum vector length? 

IF(N.LE.MaxVL) THEN      

!CDIR SHORTLOOP 

  DO I=1,N 

     ! Optimized vector code for short loop  

     S = S + X(I)       

  ENDDO 

ELSE 

  DO I=1,N 

    S = S + X(I)      ! Normal vector code 

  ENDDO 

ENDIF 

When a loop or an array expression is vectorized with the extended vectorization function, 

an alternate code generation function does not apply the loop or the array expression even if 

the -mvector-dependency-test option or directive is specified. 

 Unrolling outer loops 

The compiler automatically unrolls outer loops, if outer loop unrolling improves the 

opportunities for overlapping vector instructions or reduces the number of loads and stores 

in the inner loops. Loop Unrolling (also referred to as Loop Unwinding) is a method of 

optimizing time-critical/ performance-critical loops. It is achieved by reducing its overhead 

through reduction of the number of iterations in that loop. This iteration reduction is 

performed by replicating the functionality within the same loop. 

ORIGINAL UNROLLED 

for (i = 0; i < 100; i++) 

{ 

   func(); 

} 

for (i = 0; i < 100; i += 2) 

{ 

  func(); 

  func(); 

} 

Loop unrolling is effective when you can break any dependency chains within the loop. 

ORIGINAL UNROLLED 

for (int i=0; i<n; i++) 

{ 

  sum += data[i]; 

} 

for (int i=0; i<n; i+=4) 

{ 

  sum1 += data[i+0]; 

  sum2 += data[i+1]; 

  sum3 += data[i+2]; 

  sum4 += data[i+3]; 

} 

sum = sum1 + sum2 + sum3 + sum4; 



 

 

In principle, the target is to improve the speed of the program by elimination/reduction of 

instructions that control the loop. Through loop-unrolling, below benefits can be achieved: 

Reduction in branching 

Hiding read/write latencies 

Some illustrated examples: 

ORIGINAL UNROLLED 

Example 1 (in C)  

for (i=0; i<50; i++)  

{ 

   a[i] = b[i]; 

} 

for (i =0; i<50; i+=2)  

{ 

   a[i] = b[i]; 

   a[i+1] = b[i+1]; 

} 

Example 2 (in C)  

int countbit(unsigned int n) 

{ 

    int bits = 0; 

    while (n != 0) 

    { 

        if (n & 1) bits++; 

        n >>= 1; 

    } 

    return bits; 

} 

int countbit(unsigned int n) 

{ 

    int bits = 0; 

    while (n != 0) 

    { 

        if (n & 1) bits++; 

        if (n & 2) bits++; 

        if (n & 4) bits++; 

        if (n & 8) bits++; 

        n >>= 4; 

    } 

    return bits; 

} 

 

ORIGINAL UNROLLED 

Example 1 (in FORTRAN)  

DO I=1, N 

        A(I)=B(I) 

END DO 

DO I=1, N-1, 2 

   A(I)=B(I) 

   A(I+1)=B(I+1) 

END DO 

Example 2 (in FORTRAN)  

DO I = 1,  IMAX 

    DO J = 1, JMAX 

        S(J)=S(J)+A(I,J)*B(I,J) 

    END DO 

END DO 

if (IMAX .gt. 0)then 

  TEMP = and(IMAX,3) 

  DO I = 1, TEMP 

    DO J = 1, JMAX 

      S(J)=S(J)+A(I,J)*B(I,J) 

    END DO 

  END DO 

 



 

 

  DO I = TEMP+1, IMAX, 4 

    DO J = 1, JMAX 

      S(J)=S(J)+A(I,J)*B(I,J) & 

      & +A(I+1,J)*B(I+1,J) & 

      & +A(I+2,J)*B(I+2,J) & 

      & +A(I+3,J)*B(I+3,J) 

    END DO 

  END DO 

endif 

 

Example: The number of loads and stores of S(J) are reduced. 

ORIGINAL LOOP UNROLLED 

DO I=1,10 

     DO J=l,N 

          S(J)=S(J)+A(I,J)*B(I,J) 

     ENDDO 

ENDDO 

DO I=1,10,2 

     DO J=l,N 

          S(J)=S(J)+A(I,J)* 

                & B(I,J)+A(I+l,J)*B(I+l,J) 

     ENDDO 

ENDDO 

 Loop rerolling 

Unrolling a vectorizable loop may lower efficiency because it reduces loop length or 

converting continuous vectors to non-continuous vectors. 

The compiler recognizes unrolled loops and rerolls them. 

Example:  

ORIGINAL LOOP REROLLED 

DO I=1,100,2 

     A(I)=B(I)+C(I) 

     A(I+l)=B(I+l)+C(I+l) 

ENDDO 

DO I=l, 100 

     A(I)=B(I)+C(I) 

ENDDO 

 Outer loop strip-mining 

When an iteration count of a loop is greater than the maximum vector register length, 

the compiler puts a loop around the vector loop which splits the total vector operation 

into "strips" so that the vector length will not be exceeded. 

This is the method of converting a single loop into two nested loops for a specified 

“block” size. 

Strip-mining, also known as loop sectioning, is a loop transformation technique for 

enabling SIMD-encodings of loops, as well as providing a means of improving memory 

performance. By fragmenting a large loop into smaller segments or strips, this 

technique transforms the loop structure in two ways: 



 

 

ORIGINAL STRIP-MINED 

Example 1 (in C) 

i = 1 

do while (i<=n) 

   a(i) = b(i) + c(i)  

   i = i + 1 

end do 

// when n is a multiple of 4 

i = 1 

do while (i < (n - mod(n,4))) 

   a(i:i+3) = b(i:i+3) + c(i:i+3) 

   i = i + 4 

end do 

Example 2 (in C) 

do i=1,N 

   A[i] = x + B[i] * 2 

enddo 

do ii=1,N,B 

   do i=ii, min(ii+B-1, N), 1 

      A[i] = x + B[i] * 2 

   enddo 

enddo 

 

Example:  

ORIGINAL LOOP STRIP-MINED 

DO I=1,1000 

     A(I)=B(I)+C(I) 

ENDDO 

DO i=1,1000,maxvl 

     l=MIN(1000-i,maxvl-1) 

     A(i:i+l)=B(i:i+l)+C(i:i+l) 

ENDDO 

maxvl: maximum vector register length 

For a loop nest that has invariable array references on the outer loop inside the inner 

loop, the inner loop is split into a strip loop and the strip loop is moved outside of the 

outer loop so that invariants can be kept in the vector register. 

Example:  

ORIGINAL OUTER LOOP STRIP-MINED Load and store of S(j:j+l) 

are moved to outside. 

DO I=1,10 

     DO J=1,1000 

          

S(J)=S(J)+X(J,I)*Y(J,I

) 

     ENDDO 

ENDDO 

DO j=1,1000,maxvl 

     l=MIN(1000-j,maxvl-1) 

     DO I=1,10 

          

S(j:j+l)=S(j:j+l)+X(j:j+l,I)*

Y(j:j+l,I) 

     ENDDO 

ENDDO 

DO j=1,1000,maxvl 

     l=MIN(1000-j,maxvl-1) 

     vr(1:l)=S(j:j+l) 

     DO I=1,10 

          

vr(1:l)=vr(1:l)+X(j:j+l,I)*Y(

j:j+l,I) 

     ENDDO 

     S(j:j+l)=vr(1:l) 

ENDDO 

 

maxvl: maximum vector register length 

vr: vector register 



 

 

 Recognizing matrix multiply loop 

The compiler recognizes matrix-matrix or matrix-vector multiplication loops, and replaces 

them to a turned internal library call. 

Matrix-Vector Multiplication 

Example:  

do j = 0,N2-1 

  do i = 0,N1-1 

    C(i*NC+1) = C(i*NC+1) + B(j*NB+1) * A(i+1,j+1) 

  enddo 

enddo 

NB and NC should be integer constants. 

 

Example:  

do j = 0,N2-1 

  do i = 0,N1-1 

    C(i*NC+1) = C(i*NC+1) - B(j*NB+1) * A(i+1,j+1) 

  enddo 

enddo 

NB and NC should be integer constants. 

 

Matrix-Matrix Multiplication 

Example 1:  

do k = 1, N3 

   do j = 1, N2 

     do i = 1, N1 

       C(i, j) = C(i, j) + B(k, j) * A(i, k) 

     enddo 

   enddo 

 enddo 

 

Example 2:  

do k = 1, N3 

  do j = 1, N2 

    do i = 1, N1 

      C(i, j) = C(i, j) - B(k, j) * A(i, k) 

    enddo 

  enddo 

enddo 

 

 



 

 

Example 3:   

do j = 1, N2 

   do i = 1, N1 

      C(i, j)=0 

   enddo 

 enddo 

 do k = 1, N3 

   do j = 1, N2 

     do i = 1, N1 

       C(i,j) = C(i,j) + B(k,j) * A(i,k) 

     enddo 

   enddo 

 enddo 

do i = 1, N1 

  do j = 1, N2 

    C(i, j)=0 

    do k = 1, N3 

      C(i,j) = C(i,j) + B(k,j) * A(i,k) 

    enddo 

  enddo 

enddo 

 

Example 4:   

do j = 1, N2 

  do i = 1, N1 

     C(i, j)=0 

  enddo 

enddo 

do k = 1, N3 

  do j = 1, N2 

    do i = 1, N1 

      C(i,j) = C(i,j) - B(k,j) * A(i,k) 

    enddo 

  enddo 

enddo 

do i = 1, N1 

  do j = 1, N2 

    C(i, j)=0 

    do k = 1, N3 

      C(i,j) = C(i,j) - B(k,j) * A(i,k) 

    enddo 

  enddo 

enddo 

 Loop expansion 

The compiler expands a loop if all of the following conditions exist. 

The loop is an innermost loop. 

The loop does not contain IF statement. 

The detailed option -floop-unroll is effective. 

The loop length of the loop can be determined at compile time. 

Example  

ORIGINAL LOOP EXPANDED 

DO J=1,3 

  X(I)=Y(I) 

END DO 

X(1)=Y(1) 

X(2)=Y(2) 

X(3)=Y(3) 

Loop expanding is done before vectorization, therefore when all the loops in an outer loop is 

expanded, the outer loop is vectorized as an innermost loop. 

 



 

 

Example  

ORIGINAL LOOP EXPANDED 

DO I=1,N 

  DO J=1,3 

    X(I,J) = X(I,4) 

  END DO 

END DO 

DO I=1,N        

    X(I,1)=X(I,4)  

    X(I,2)=X(I,4)  

    X(I,3)=X(I,4)  

ENDDO 

Loops that have a small iteration count and contain only a few lines of code may be expanded 

into the equivalent statements, so that the loop no longer exists. This may enable other 

optimizations. 

Loop and array assignment expanding take precedence over loop collapsing and the 

COLLAPSE directive and the user should specify the detailed option -noexpand to make 

collapsing occur in these cases. 

 Loop fusion 

As the name suggests, it is the mechanism of fusing two adjacent loops of similar 

lengths/functionality into one loop. This is a very effective method of reducing the loop 

overhead and improving run-time performance of the program. 

Although loop fusion reduces loop overhead, it does not always improve run-time 

performance, and may in some cases, reduce run-time performance. For example, the 

memory architecture may provide better performance if two arrays are initialized in separate 

loops, rather than initializing both arrays simultaneously in one loop. 

ORIGINAL FUSED 

Example 1 (in C)  

/* L1: short parallel loop */ 

for (i=0; i < 100; i++)  

{ 

 a[i] = a[i] + b[i];   

} 

/* L2: another short parallel loop */ 

for (i=0; i < 100; i++)  

{ 

 b[i] = a[i] * d[i];  

} 

/* L3: a larger parallel loop */ 

for (i=0; i < 100; i++)  

{ 

  a[i] = a[i] + b[i]; 

b[i] = a[i] * d[i]; 

} 

 

 

 

 



 

 

ORIGINAL FUSED 

Example 1 (in FORTRAN)  

psx(:)=0.0D0 

do i=1,imax 

 psx(i)=ps(i)*lnpsx(i)  

end do 

 

psy(:)=0.0D0 

do i=1,imax 

 psy(i)=ps(i)*lnpsy(i) 

end do 

psx(:)=0.0D0 

psy(:)=0.0D0 

do i=1,imax 

 psx(i)=ps(i)*lnpsx(i)  

 psy(i)=ps(i)*lnpsy(i) 

end do 

Example2 (in FORTRAN)  

do i=1, imax 

  do k=1, NUM                   

    if ( cvr(i,k) > 1.D-30 ) then 

      cbase(i) = p(i,k) 

      exit  

    end if  

  end do 

 

  do k=NUM, 1, -1                

    if ( cvr(i,k) > 1.D-30 ) then 

      ctop(i) = p(i,k) 

      exit 

    end if 

  end do 

end do 

do i=1, imax 

  FBase=0 

  FTop=0 

  do k=1, NUM                   

    if (( cvr(i,k) > 1.D-30 ) .and. FBase.eq.0) then 

      FBase = k 

    end if 

    if (( cvr(i,((NUM + 1) - k)) > 1.D-30 ) .and. 

FTop.eq.0) then 

      FTop = k 

    end if 

  end do 

  if (FBase.ne.0) then 

    cbase(i) = p(i,FBase)  

  end if 

  if (FTop.ne.0) then 

    ctop(i) = p(i,((NUM + 1) - FTop)) 

  end if 

end do 

Example 3 (in FORTRAN)  

l = kmax - 1 

  

DO i = 1, imax 

  WORK(i, l) =DX(i, l) * DY(i, l) 

  WSUM(i, l) = WORK(i, l) 

  ARR(i, l, l) = 1.0d0 

  ARR(i, l+1, l) = ARR(i,l,l) - WORK(i,l) 

  ARR(i, l, l + 1) = ARR(i, l + 1, l) 

  ARR(i,l+2,l)= ARR(i,l+1,l) - WORK(i,l+ 1) 

  ARR(i, l, l + 2) = ARR(i, l + 2, l) 

END DO 

 

l = kmax - 1 

 

DO i = 1, imax 

  WORK(i, l) = DX(i, l) * DY(i, l)  

  WSUM(i, l) = WORK(i, l) 

  ARR(i, l, l) = 1.0d0 

  ARR(i, l+1,l) = ARR(i, l, l) - WORK(i, l) 

  ARR(i, l, l + 1) = ARR(i, l + 1, l) 

  ARR(i,l+2,l)= ARR(i,l+1,l) - WORK(i,l+1) 

  ARR(i, l, l + 2) = ARR(i, l + 2, l)  

 

  !REPLACED ALL ‘l’ WITH ‘l+1’ 



 

 

l = kmax 

do i = 1, imax 

  WORK(i, l) = DX(i, l) * DY(i, l) 

  WSUM(i, l) = WORK(i, l) 

  ARR(i, l, l) = 1.0d0 

  ARR(i, l+1,l) = ARR(i, l, l) - WORK(i, l) 

  ARR(i, l, l + 1) = ARR(i, l + 1, l) 

end do 

 

 

  WORK(i, l+1) = DX(i, l+1) * DY(i, l+1) 

  WSUM(i, l+1) = WORK(i, l+1) 

  ARR(i, l+1, l+1) = 1.0d0 

  ARR(i,l+2,l+1)=ctau(i,l+1,l+1)-WORK(i, l+1) 

  ARR(i,l+1,l+2) = ARR(i,l+2, l+1)  

end do 

4.2.23 Effects on Arithmetic Results 

Execution results may differ before and after vectorization for the following reasons. 

The order of operation may differ before and after vectorization. 

Example: The operation order of a summation operation containing eight 

elements. 

BEFORE VECTORIZATION AFTER VECTORIZATION 

s=s+a1 

s=s+a2 

: 

: 

s=s+a8 

t1=a1+a5 

t2=a2+a6 

t3=a3+a7 

t4=a4+a8 

t5=t1+t3 

t6=t2+t4 

t7=t5+t6 

s=s+t7 

To increase speed, the vector versions of intrinsic functions do not always use the same 

algorithms as the scalar versions. 

Optimization techniques, such as conversion of division to multiplication, are applied 

differently. 

Optimization techniques, such as reordering of arithmetic operations, are applied differently. 

Integer iteration macro operation is vectorized by using a floating-point instruction. So when 

the result exceeds 52 bits or when a floating overflow occurs, the result differs from that of 

scalar execution.  

4.2.24 Detection of Vectorization-Caused Errors and Exceptions 

Detection of errors and arithmetic exceptions by intrinsic functions may differ before and after 

vectorization. A difference in the order of detection is shown as follows: 

DO I=1,100 

     X(I)=SQRT(A(I)) 

     Y(I)=ALOG(B(I)) 

END DO 



 

 

On the assumption that A(2) and A(5) are negative and other elements of A are positive, and 

B(3) and B(4) are zero and other elements of B are positive, the order of error detection 

before vectorization is as follows: 

    Error for A(2)<0 in SQRT 

    Error for B(3)=0 in ALOG 

    Error for B(4)=0 in ALOG 

    Error for A(5)<0 in SQRT  

The order of error detection after vectorization is as follows: 

    Error for A(2)<0 in SQRT 

    Error for A(5)<0 in SQRT 

    Error for B(3)=0 in ALOG 

    Error for B(4)=0 in ALOG  

When a loop containing intrinsic functions is vectorized, and the vector version is referenced, 

no error check is made on the values of arguments. The NOVERRCHK compiler directive is 

enabled. 

 

4.2.25 Boundary of Dummy Array 

Data which is an operand of the vector operation must be aligned on a memory boundary 

corresponding to its type. On vectorization, the compiler checks whether each operand is 

aligned on a vectorizable memory boundary or not. The compiler assumes that the dummy 

array is aligned on a vectorizable memory boundary, since the alignment of the dummy array 

is unknown at compilation. Then, if an actual array corresponding to the dummy array is not 

aligned on a vectorizable memory boundary, an execution exception occurs. In this case, 

each operand of vectorized operations must be aligned on the correct memory boundary. 

 

4.2.26 Array Declaration 

When the compiler checks whether vectorization would preserve the proper dependency 

between array definitions and references, it assumes that all values of subscript expressions 

are within the upper and lower limits of the corresponding size in the array declaration. If a 

loop violating this condition is vectorized, correct results are not guaranteed. 

When a loop containing IF statements is vectorized, arithmetic operations are carried out 

only for the part that conditionally requires them, but arrays are referenced as many times 

as the iteration count called for by the DO statement and array elements that should not be 



 

 

referenced are referenced. Unless the arrays have enough area reserved to satisfy the 

iteration count, memory access exceptions can occur as a result. 

Example 

DIMENSION A(10) 

 : 

 : 

DO I=1,50 

   IF(I.LE.10)THEN 

     X=A(I) 

   ELSE 

   END IF 

 : 

 : 

ENDDO 

When a loop containing a branch out of the loop is vectorized, arithmetic operations are 

carried out unconditionally for the part before the branch point, as many times as the iteration 

count called for by the DO statement. Therefore, arithmetic operations that should not be 

carried out are carried out, or data that should not be referenced are referenced. These 

events can cause errors or exceptions. 

Example 

DO I=1,30 

      X=SQRT(A(I)) 

      IF(X.LE.0.01)EXIT 

ENDDO 

If a branch occurs when I=10 and A(20)<0, an error occurs that should not occur. 

 

4.2.27 Association of Dummy Arguments 

When the compiler checks definition-reference dependency, it assumes that dummy 

arguments with different names identify different elements. Therefore, if different dummy 

arguments are associated with the same actual argument, and either of them is defined, 

correct results are not guaranteed. If dummy arguments are associated with a common block 

element, the same problem occurs. Such programming violates the Fortran standard. 

Example 

DIMENSION A(100) 

     : 

CALL SUB  (A,A,100) 

     : 

END 



 

 

SUBROUTINE SUB (A,B,N) 

DIMENSION A(N),B(N) 

DO I=1,N-1 

      A(I+1)=X*B(I) 

ENDDO 

END 

 

4.2.28 High-Speed I/O Techniques 

There are two techniques for speeding up I/O operations. 

 One involves program coding to reduce unnecessary I/O overhead 

 The other involves file access to reduce the number of times I/O accesses external files.  

This section explains the techniques for speeding up I/O operations in terms of these 

approaches. 

The compiler provides the file I/O analysis information output function (F_FILEINF) as a 

support function for determining whether I/O operations are performed at a satisfactorily 

high speed. This function is also explained here. 

 Programming Techniques 

 Unformatted I/O is recommended when possible. Format conversion is not done 

and resulting precision errors are avoided. 

 Avoid implied-DO lists in an I/O list, and use array names whenever possible. When 

array names are used, the transfer of data between the I/O buffer and the user 

area is done with one instruction. When an implied-DO list is used, I/O speed is 

reduced by additional loop overhead. 

Example 

DIMENSION A(M,N) 

WRITE(1)((A(I,J), I=1, M), J=1, N) 

 

The above is less efficient than 

WRITE(1)A 

When an assumed-size dummy array is used, or when an implied-DO list must be used 

because of programming considerations, the implied-DO list should be arranged so 

that the implied loop processing is done only once. The information of the implied-DO 

list may be collectively passed to the I/O routine. The overhead of I/O at execution 

time is reduced, thereby increasing processing speed. 

When array element names are specified in an implied-DO list, the values of subscripts 



 

 

should be written in the following format: 

A([+a*] I [+b]) 

where:  

I    DO variable 

a,b  Unsigned variable or constant 

[ ]   Optional 

No expression should be written in the implied-DO list for the WRITE statement. 

Example 

ORIGINAL OPTIMIZED 

DIMENSION A(10) 

WRITE(1)(A(I)+X, I=1, 10) 

 

DIMENSION A(10), B(10) 

DO 10 I=1, 10 

 10     B(I)=A(I)+X 

WRITE(1)(B(I), I=1, 10) 

The initial, terminal, and increment parameter should not be computed in the implied-

DO list. 

Example 

ORIGINAL OPTIMIZED 

WRITE(1)(A(I), I=1, J*K) 

 

JK=J*K 

WRITE(1)(A(I), I=1, JK) 

Since the implied-DO list is processed in batches, for an array of two or more 

dimensions the outer loop is expanded. To reduce the overhead in expanding a DO 

loop, reduce the number of calls to the runtime I/O routines as follows. 

Make the DO loop such that the list of elements to be processed by the implied-DO list 

is contiguous in the storage area. The data transfer between the I/O buffer and the 

user area in the runtime I/O routine can be done with one instruction. 

By exchanging the subscripts of the inner DO loop and that of the outer DO loop, the 

DO loop becomes contiguous. 

Example 

ORIGINAL OPTIMIZED 

DIMENSION A(M,N) 

WRITE(1)((A(I,J), J=1, N), I=1,M) 

 

DIMENSION A(M,N) 

WRITE(1)((A(I,J), I=1, M), J=1, N) 

Specify the variable of the innermost DO loop as one dimensional and avoid increment 

parameter other than 1.  

Make the DO loop so that only one I/O list may exist in one implied-DO list. If more 



 

 

than one I/O list is desired, use two or more implied-DO lists. 

Example 

ORIGINAL OPTIMIZED 

WRITE(1)(A(I), B(I), I=1, N) WRITE(1)(A(I), I=1, N), (B(I), I=1, N) 

 Asynchronous I/O Functions 

Asynchronous I/O functions are provided to increase speed by conducting I/O 

processing and arithmetic processing simultaneously. 

The asynchronous I/O function consists of an asynchronous READ statement and an 

asynchronous WRITE statement that initiate data transfer between main memory and 

secondary memory (such as a magnetic disk) and a WAIT statement. Application 

programs can be executed more rapidly because the data transfer is processed in 

parallel with the executable statements that follow the asynchronous READ or 

asynchronous WRITE statement. 

BUFFER IN/BUFFER OUT statements and UNIT/LENGTH functions are added for the 

same purpose. 

 Techniques for Effective File Access 

To perform high-speed file access, the user should: 

 Reduce the number of data transfers between the I/O buffer used by the compiler 

and the user area. 

 Improve efficiency in buffering (processing to store data in a buffer) using the I/O 

buffer. 

 Reduce the number of I/O operations on external files. 

 Use optimum types of records.  

The second and subsequent items are closely related to specifications of various runtime 

options. This section describes these relationships. 

The user can perform faster file access by satisfying the conditions of these items. 

 I/O Buffer 

This section describes the I/O buffer used by the compiler. 

During execution of I/O statements, data is generally transferred between the user data area 

and the system area via the I/O buffer. I/O routines perform various processing to effectively 

use the I/O buffer. I/O routine processing affects file access. 



 

 

The size of the I/O buffer can be altered by specifying the runtime option VE_FORT_SETBUF. 

The default depends on file organization and other factors as follows: 

 Sequential file (all file system types): 512 KB 

 Direct file (when the value of the RECL specifier in the OPEN statement is 4096 bytes 

or less): 4 KB 

 Direct file (when the value of the RECL specifier in the OPEN statement is 

2,048,000,000 bytes or more): 2,000,000 KB 

 Direct file (when the value of the RECL specifier in other than the above): Raise 

fractions of record length to unit (KB). 

 Management for I/O Buffer 

This section describes the I/O buffer used by the compiler. 

 Sequential access I/O 

I/O routines examine the length of each element of an I/O list. When the list is small (I/O-

buffer-size*2), data is buffered. When the list is large, data is transferred directly between 

the user area and the system area without using the I/O buffer (bufferless I/O). If I/O mode 

is output, the contents of the I/O buffer are output before direct I/O. If I/O mode is input, 

the contents of the I/O buffer are input before direct I/O. 

The above processing can speed up I/O operations because it effectively uses the I/O buffer 

only for I/O statements that process small amounts of data. 

The contents of the I/O buffer are output in the following cases: 

‒ When the I/O buffer becomes full. 

‒ When the CLOSE statement is executed. 

‒ When an I/O statement which causes file positioning beyond the range of the 

I/O buffer is executed. 

‒ When the REWIND statement is executed after the WRITE statement.  

 Direct access I/O 

This processing is basically the same as for unformatted sequential access I/O. Unlike 

sequential access, however, the contents of the I/O buffer are output (switched) in the 

following cases: 

‒ When the system detects a nonconsecutive record number (for example, when 



 

 

record #3 is the next record processed after record #1) in the I/O statement. 

‒ When the I/O mode is changed from output to input or vice versa.  

Record numbers are normally nonconsecutive in a direct access file. In this case, the contents 

of the I/O buffer are output (switched) frequently. Note that this type of processing gains 

little benefit from effective use of the I/O buffer. 

 Efficient Techniques 

After it has been decided to perform processing using the I/O buffer, examine the 

following measures for performing high-speed unformatted file access. An explanation 

is given for each type (sequential/direct access) of file that is transferred. 

 Sequential file 

Run-time option VE_FORT_SETBUF is effective in the following cases: 

‒ When a large number of I/O statements are used for a small amount of data 

transfer. 

‒ When the total size of the file is known. (In this case, when the size is specified 

using this runtime option, data is not transferred to or from the file and all I/O 

operations are performed using the I/O buffer.)  

 Direct file 

Run-time option VE_FORT_SETBUF is effective in the following cases: 

When the record numbers to be processed by an I/O statement are contiguous (record #1, 

record #2, record #3, etc.). Record numbers in a direct file are normally nonconsecutive. 

When a value greater than the default is specified for runtime option VE_FORT_SETBUF in 

cases other than the above, the size of data transferred at one time becomes larger. This 

may degrade performance. 

 

 



 

 

Chapter5 Conclusion 

The tuning methodology specified in this document requires a skillful perspective of code 

analysis to understand which part of the source code is high cost and how performance must 

be extracted from it. 

This procedure document must be used as the guide for understanding basics of tuning 

applications for the NEC SX-Aurora TSUBASA. 

Fine-tuning an application is a skill that may not necessarily be achieved through a specific 

tuning process. Performance tuning is an act of experiment. It is necessary to understand 

that there is no measure of highest performance. The application must be constantly 

scrutinized iteratively to look for that one detail that may result in a higher performance. 

The tuning personnel may encounter various examples of un-optimized: 

 line-of-code 

 code structure 

 code flow structure; OR 

 algorithm 

A process can not completely define what to tune in what situation. It is a deep study of the 

algorithm and code structure that can help the tuning personnel to extract best performance 

from the code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 


