

SX-Aurora TSUBASA

Performance Tuning Guide

Proprietary Notice

Proprietary Notice

The information disclosed in this document is the property of NEC Corporation (NEC)

and/or its licensors. NEC and/or its licensors, as appropriate, reserve all patent,

copyright, and other proprietary rights to this document, including all design,

manufacturing, reproduction, use and sales rights thereto, except to the extent said

rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

Remarks

- NEC Fortran Compiler conforms to the following language standards.

 - ISO/IEC 1539-1:2004 Programming languages

 - Fortran-OpenMP Application Program Interface Version 4.5

NEC Fortran compiler also conforms a part of “ISO/IEC 1539-1:2010 Programming

languages –Fortran"

- NEC C/C++ Compiler conforms to the following language standards.

 -ISO/IEC 9899:2011 Programming languages

 -C-ISO/IEC 14882:2014 Programming languages

 -C++-OpenMP Application Program Interface Version 4.5

- All product, brand, or trade names in this publication are the trademarks or

registered trademarks of their respective owners.

- In this document, the Vector Engine is abbreviated as VE.

- The reader of this document assumes that you have knowledge of software

development in Fortran/C/C++ language on Linux.

Preface

Preface

Majority of the discussed tuning mechanisms are verified for C/C++ and Fortran90

development only. Also, the optimization and performance tuning avenues have

been discussed for only NEC SX-Aurora TSUBASA target. Therefore, the

methodologies are limited to the compilers and tools provided with the NEC

SX-Aurora TSUBASA development and execution environment.

Some of the tuning methodologies (like loop unrolling, loop-fusion, etc.) are related

to the general concepts of code optimization and are independent of the underlying

architecture.

This document aims at exploring the architecture of NEC’s SX-Aurora TSUBASA

Vector Engine and opportunities for source code tuning for the architecture.

Conventions

The following conventions are used throughout this document.

 Names of variables, directives, options are printed in italics.

 Syntaxes, commands appear in gray boxes.

 Source code is enclosed in tables and boxes.

Contents

Contents

2.1 Format List .. 9

2.2 Diagnostic List .. 10

2.3 Program Information (aka PROGINF) ... 11

2.4 FTRACE – Simple Performance Analysis Function 12

3.1 Analyze the Application .. 15

3.1.1 Static analysis: Study and Investigation 15

3.1.2 Performance Analysis through Execution 15

3.2 Identify Tuning Candidates ... 18

4.1 Performance gain through Parallelization .. 24

4.1.1 OpenMP ... 24

4.1.2 Message Passing Interface (MPI) ... 24

4.2 Performance gain through Vectorization ... 25

4.2.1 Vectorization .. 25

4.2.2 Basic Conditions for Vectorization .. 27

4.2.3 Data Dependency Conditions .. 31

4.2.4 Improving the Vectorization Ratio .. 36

4.2.5 Improving Vector Instruction Efficiency 39

4.2.6 Lengthening the Loop .. 39

4.2.7 Improving Array Reference Patterns .. 40

4.2.8 Removing IF Statements .. 42

4.2.9 Avoiding Iterative Operations .. 45

4.2.10 Avoiding Loop Division .. 45

4.2.11 Avoiding Loop Unrolling for Short Loops 45

4.2.12 Increasing Concurrency .. 46

4.2.13 Avoiding Arithmetic Division .. 46

4.2.14 Using Vectorization Options and Directives 46

4.2.15 Other Effective Techniques .. 49

4.2.16 Vectorization by Statement Replacement 50

4.2.17 Vectorization Using Work Vectors ... 50

4.2.18 Macro Operations ... 50

4.2.19 Examples of Vectorization.. 54

Contents

4.2.20 Partial Vectorization .. 60

4.2.21 Code-Related Optimization .. 60

4.2.22 Loop Transformations ... 64

4.2.23 Effects on Arithmetic Results ... 78

4.2.24 Detection of Vectorization-Caused Errors and Exceptions 78

4.2.25 Boundary of Dummy Array .. 79

4.2.26 Array Declaration ... 79

4.2.27 Association of Dummy Arguments .. 80

4.2.28 High-Speed I/O Techniques ... 81

List of figures

List of figures

Figure 1 Types of Vectors ... 35

Figure 2 Start-Up Time and Cross Length ... 39

Figure 3 Constant stride vector ... 40

Figure 4 Vector Mask Generation Instruction ... 56

Figure 5 Masked Vector Operation Instruction .. 56

Figure 6 Vector Compression and Expansion ... 58

Figure 7 Vector Gather and Scatter Instructions 60

Chapter1 What is a Vector Architecture?

Vector architectures grab sets of data elements scattered about memory, place them into

large, sequential register files, operate on data in those register files, and then disperse the

results back into memory. A single instruction operates on vectors of data, which results in

dozens of register–register operations on independent data elements.

A key aspect of vector architecture is the single-instruction-multiple-data (SIMD) execution

model. SIMD support results from the type of data supported by the instruction set, and how

instructions operate on that data.

In a traditional scalar processor, the basic data type is an n-bit word. The architecture often

exposes a register file of words, and the instruction set is composed of instructions that

operate on individual words.

In vector architecture, there is support of a vector data type, where a vector is a collection

of VL n-bit words (VL is the vector length). Previously, vector machines operated on vectors

stored in main memory.

Chapter2 Toolkit on NEC SX-Aurora TSUBASA

Once the basics of vectorization are discussed, we can now move to specific tools for NEC

SX-Aurora TSUBASA that help the programmer achieve vectorization.

Below is the list of compilers that are available on NEC SX-Aurora TSUBASA.

Compiler name Language Path

ncc C /opt/nec/ve/bin/

mpincc C with MPI support /opt/nec/ve/bin/

nfort FORTRAN /opt/nec/ve/bin/

mpnfort FORTRAN with MPI support /opt/nec/ve/bin/

These compilers support some switches which help the programmer obtain clues to perform

optimization. They are described below:

2.1 Format List

The format list is an illustrative representation of the current optimization status of the source

code. The source lines for each function together with the following information are output

to the list.

 Vectorization status of each loop

 Parallelization status of each loop

 Inline expansion status of function calls

The format list can be obtained by using the -report-format or -report-all compiler switch.

The list is created in the current directory, under the name source-file-name.L.

ncc –report-format a.c

The format list looks like below:

2.2 Diagnostic List

Diagnostics are categorized as follows and output in the list.

 Diagnostics for inline expansion

 Diagnostics for optimization

 Diagnostics for vectorization and parallelization

The diagnostic list gives a detailed optimization status of the source code with line numbers.

The explanation helps the developer to strategize tuning.

The diagnostic list can be obtained by using the -report-diagnostics or -report-all compiler

switch.

The list is created in the current directory, under the name source-file-name.L.

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:16

2018 (a)

FILE NAME: a.c (b)

FUNCTION NAME: func (c)

FORMAT LIST

LINE LOOP STATEMENT

(d) (e) (f)

1: int func(int m, int n)

2: {

3: int i,j, a[m][n], b[m][n];

4: +------> for (i = 0; i < m; i++) {

5: |V-----> for (j = 0; j < n; j++) {

6: || a[i][j] = a[i][j] + b[i][j];

7: |V----- }

8: +------ }

9: return a[0][0];

10: }

nfort –report-diagnostics fft.f90

2.3 Program Information (aka PROGINF)

Program information is a report that contains the major execution parameters such as

Execution Time, Memory Size, Vec.Op Ratio, Avg Vector Length, etc. The generation of this

report is controlled by the environment variable VE_PROGINF. PROGINF can be obtained by

setting VE_PROGINF to YES or DETAIL.

This report is generated after the execution of a load module. It is output to stderr after its

complete execution. The report looks like below:

NEC C/C++ Compiler (1.0.0) for Vector Engine Wed Jan 17 14:55:20

2018 (a)

FILE NAME: fft.f90 (b)

FUNCTION NAME: FFT_3D (c)

DIAGNOSTIC LIST

LINE DIAGNOSTIC MESSAGE

(d) (e) (f)

 7: inl(1222): Inlined

 9: vec(101): Vectorized loop. 440: vec(10): Vectorization obstructive

procedure reference.: fft1dA

 448: vec(1): Vectorized loop.

$ export VE_PROGINF=DETAIL

$ /opt/nec/ve/bin/ve_exec ./a.out

ncc –ftrace source.c

2.4 FTRACE – Simple Performance Analysis Function

The compiler kit of SX supports a performance analysis function called FTRACE.

It is used to obtain performance information on the CPU overhead and vectorization of each

code region in a program. It can be used to obtain performance information for:

 each function/subroutine of the program

 any programmer-defined region

The ftrace report can be obtained by using the -ftrace compiler switch

Once the source code is compiled using the ftrace switch, an ftrace-compliant binary is

generated. Upon execution among other output files, an ftrace report is generated by the

name of ftrace.out.

ftrace tool-kit provides tools to convert the ftrace.out files to text/readable format. The tools

are available on the below path:

 ******** Program Information ********

 Real Time (sec) : 204.076110

 User Time (sec) : 203.706817

 Vector Time (sec) : 197.623752

 Inst. Count : 38596814372

 V. Inst. Count : 13465836887

 V. Element Count : 2957231889428

 V. Load Element Count : 997524789907

 FLOP Count : 1776569208614

 MOPS : 18087.515129

 MOPS (Real) : 18053.533350

 MFLOPS : 8721.924006

 MFLOPS (Real) : 8705.537759

 A. V. Length : 219.609959

 V. Op. Ratio (%) : 99.317880

 L1 Cache Miss (sec) : 5.637238

 CPU Port Conf. (sec) : 0.125939

 V. Arith. Exec. (sec) : 29.765092

 V. Load Exec. (sec) : 163.530245

 VLD LLC Hit Element Ratio (%) : 58.115252

 Power Throttling (sec) : 0.000000

 Thermal Throttling (sec) : 0.000000

 Memory Size Used (MB) : 592.000000

 Start Time (date) : Tue Feb 5 23:42:11 2019 JST

 End Time (date) : Tue Feb 5 23:45:35 2019 JST

Tool name Path Syntax

ftrace /opt/nec/ve/bin/ ftrace -f ftrace.out -fmt1

Once converted to text, the ftrace report looks like below:

NOTE: Execution time of –ftrace execution is longer than no-ftrace execution. Delay is directly

proportional to the no. of subroutine calls.

FTRACE ANALYSIS LIST*

----------------------*

Execution Date : Sat Feb 17 12:44:49 2018 JST

Total CPU Time : 0:03'24"569 (204.569 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 1012 49.093(24.0) 48.511 23317.2 14001.4 96.97 83.2 42.132 5.511 0.000 80.32 funcA

 160640 37.475(18.3) 0.233 17874.6 9985.9 95.22 52.2 34.223 1.973 2.166 96.84 funcB

 160640 30.515(14.9) 0.190 22141.8 12263.7 95.50 52.8 29.272 0.191 2.544 93.23 funcC

 160640 23.434(11.5) 0.146 44919.9 22923.2 97.75 98.5 21.869 0.741 4.590 97.82 funcD

 160640 22.462(11.0) 0.140 42924.5 21989.6 97.73 99.4 20.951 1.212 4.590 96.91 funcE

53562928 15.371(7.5) 0.000 1819.0 742.2 0.00 0.0 0.000 1.253 0.000 0.00 funcG

 8 14.266(7.0) 1783.201 1077.3 55.7 0.00 0.0 0.000 4.480 0.000 0.00 funcH

 642560 5.641(2.8) 0.009 487.7 0.2 46.45 35.1 1.833 1.609 0.007 91.68 funcF

 2032 2.477(1.2) 1.219 667.1 0.0 89.97 28.5 2.218 0.041 0.015 70.42 funcI

 8 1.971(1.0) 246.398 21586.7 7823.4 96.21 79.6 1.650 0.271 0.000 2.58 funcJ

--

54851346 204.569(100.0) 0.004 22508.5 12210.7 95.64 76.5 154.524 17.740 13.916 90.29 total

Chapter3 Methodology for Tuning

This is a step-by-step procedure of tuning various applications on NEC SX-Aurora TSUBASA.

The tuning process can be broken down to the following major steps:

Step 1: Application analysis

Step 2: Identification of Overall Tuning Strategy

Step 3: Identification of Tuning Candidates

Step 4: Identification of Specific Tuning Strategy

Step 5: Implement Performance Tuning Strategy

Step 6: Re-estimate Performance

Step 7: Result Verification

Let’s discuss the detailed procedure for each step mentioned.

Apply Tuning Methodology:

1. Vectorization Techniques

2. Code Optimization

3. Parameter Setting

Application Execution

Program Information

ftrace REPORT

Identify top high-
cost routines

Application

Identify areas for
improvement

Performance
Improvement

?

Application Execution: Verification

Program Information

ftrace REPORT

Verify Improvement against each tuning approach

Performance
Target achieved?

Accept Tuning
Methodology

Reject Tuning
Methodology

Tuning Complete

N

N Y

Y

3.1 Analyze the Application

The application should be analyzed in two phases:

1. Static Analysis: Study and Investigation

2. Performance Analysis through Execution

3.1.1 Static analysis: Study and Investigation

From this phase, the below information should be obtained:

 Program Overview: Simulation methods, Convergence methods used in the application.

 File Structure of the application:

(1) No. of Input/Output/config files

(2) Data Structures involved in read/write of files.

(3) Details of routines that refer to input/output files

 Application code flow:

(1) Internal/External Interfaces

(2) List of routines that are a part of the initialization part of the application

(3) List of routines that are a part of the main calculation loop of the application.

(4) Memory Requirements

 Any specific frameworks used in the source code

(1) Parallelization frameworks like MPI

(2) Multithreading Frameworks like OpenMP, etc

 Problem topology for parallelization

3.1.2 Performance Analysis through Execution

Performance tuning for an application can also be planned based on performance parameters

from the execution reports. It is expected that the execution information meets the peak

performance of the underlying architecture.

From the above sample program information, the MFLOPS parameter is observed as nearly

8.7 GFLOPS. There is a scope for optimization in the application source that can utilize the

peak performance.

Other such parameters are:

Performance

Parameter

Recorded

Value

Target Value Remarks

MFLOPS 8721.92 Close to peak

A. V. Length 219.61 256

V. Op. Ratio (%) 99.31 99.99

VLD LLC Hit Element

Ratio (%)

58.11 100.00

Referring to Amdahl’s law, it is attempted that every tuning strategy must lead to 99.99%

vectorization of the target source code.

There are other parameters that are vital to the overall performance; although target peak

 ******** Program Information ********

 Real Time (sec) : 204.076110

 User Time (sec) : 203.706817

 Vector Time (sec) : 197.623752

 Inst. Count : 38596814372

 V. Inst. Count : 13465836887

 V. Element Count : 2957231889428

 V. Load Element Count : 997524789907

 FLOP Count : 1776569208614

 MOPS : 18087.515129

 MOPS (Real) : 18053.533350

 MFLOPS : 8721.924006

 MFLOPS (Real) : 8705.537759

 A. V. Length : 219.609959

 V. Op. Ratio (%) : 99.317880

 L1 Cache Miss (sec) : 5.637238

 CPU Port Conf. (sec) : 0.125939

 V. Arith. Exec. (sec) : 29.765092

 V. Load Exec. (sec) : 163.530245

 VLD LLC Hit Element Ratio (%) : 58.115252

 Power Throttling (sec) : 0.000000

 Thermal Throttling (sec) : 0.000000

 Memory Size Used (MB) : 592.000000

 Start Time (date) : Tue Feb 5 23:42:11 2019 JST

 End Time (date) : Tue Feb 5 23:45:35 2019 JST

values cannot be fixed. Such parameters are preferred to be improved to as optimized as

possible.

Performance

Parameter

Recorded

Value

Target Value Remarks

Real Time (sec) 204.08 Lowest Represents the wall-clock

time

CPU Time(sec) 203.70 Lowest Exclusive time, User Time

Vector Time (sec) 197.62 Close to Real

Time

Vector–only time. Depends

on B/F.

Through this evaluation step, the areas for performance improvement are prioritized. Once

prioritized, it is noted which are the parameters that need improvement first.

When a performance parameter is not optimum, each participating high-cost routine must

be tuned with target to improve that performance parameter. The combined effect of tuning

of each high-cost routine will reflect on the overall performance of the application.

Note that the performance of an application directly maps with the real time consumed for

its execution. The motive behind improving the MFLOPS, average vector length, vectorization

ratio, etc. is for faster execution, i.e. total execution time.

Exceptional cases may occur where tuning brings improvement in the targeted parameter,

say Vector Op. Ratio, but results in longer execution time. This may happen due to reasons

like:

 vectorization of a short loop

 network port conflicts

 high cost inline expansion, etc.

In such cases, it is important to take a call where highest priority lies. General expectation

from tuning is faster execution. The tuning measure may be rejected if it ends up slowing

down execution. However, attempts must be made to identify the root cause of the

exceptional behavior and rectify them so as to improve the execution time.

Once the tuning approaches have been identified, the next step is to identify the tuning

candidates.

3.2 Identify Tuning Candidates

We need to execute the ftrace compliant build version in order to move ahead. This ftrace

report is then analyzed for identification of tuning avenues.

Below is a sample ftrace report for reference:

The routines are first scanned for their percentage contribution to the overall execution time

(cost of the routine). Then those routines are selected that are higher-cost as compared to

the rest of the participating routines (roughly greater than ~1%).

The individual performance parameters of each shortlisted routine are scanned based on the

above thumb rule and strategy is chosen for each routine.

Tuning Approach 1: Inline Expansion

The objective of inline expansion is to get rid of the leaves of the calling tree. By using inline

expansion, the frequency of the iterative function calls can be decreased. Functions calls

within loops are a common obstruction to vectorization, parallelization and optimization in

general. Inline expansion is a tool to get rid of such obstructions.

 A function can identified as an inline expansion candidate, if FREQUENCY is high

and AVER. TIME is low. The gauge of high and low is relative to the application. The

tuning personnel can judge by analysis if the “FREQUENCY:AVER.TIME” ratio is

suitable for performing inline expansion.

Achievement Expected: Large number of iterative calls to low cost function creates

a major overhead. By inline expansion such functions, this overhead may be avoided.

 If there is a high-cost routine and its vectorization/optimization is inhibited by a

 FTRACE ANALYSIS LIST

Execution Date : Tue Feb 19 12:23:39 2019 JST

Total CPU Time : 0:05'31"547 (331.547 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 16008 176.431(53.2) 11.021 1365.0 0.0 27.44 254.0 4.345 84.385 0.738 95.05 SUB01

 37650816 71.194(21.5) 0.002 35742.3 11539.4 97.93 246.9 56.919 10.218 0.000 99.97 SUB02

 4706352 47.946(14.5) 0.010 9169.6 5266.6 89.40 246.9 5.535 23.156 0.000 99.97 SUB03

 18825408 20.172(6.1) 0.001 10260.1 3914.7 95.00 246.7 5.839 9.834 0.000 99.94 SUB04

 9412704 8.020(2.4) 0.001 60934.6 39371.2 98.22 230.9 5.105 1.229 0.000 99.81 SUB05

 10693344 3.760(1.1) 0.000 972.9 0.0 0.00 0.0 0.000 1.708 0.000 0.00 SUB06

 8132064 2.407(0.7) 0.000 1162.3 0.0 0.00 0.0 0.000 0.949 0.000 0.00 SUB07

 16008 1.334(0.4) 0.083 30481.5 23625.6 98.97 252.7 1.198 0.026 0.000 94.41 SUB08

 8 0.118(0.0) 14.750 1037.0 5.5 10.03 252.3 0.000 0.000 0.000 100.00 SUB09

 1 0.115(0.0) 114.572 744.8 7.6 0.01 229.0 0.000 0.049 0.000 0.00 SUB10

 32016 0.049(0.0) 0.002 33744.0 16414.2 98.06 246.9 0.038 0.008 0.000 99.23 SUB11

 8 0.000(0.0) 0.001 20920.9 0.0 95.19 250.1 0.000 0.000 0.000 0.00 SUB12

 8 0.000(0.0) 0.000 880.6 0.0 0.00 0.0 0.000 0.000 0.000 0.00 SUB13

 89484745 331.547(100.0) 0.004 11973.5 4527.6 92.31 245.1 78.979 131.562 0.738 99.80 total

function call, the called function can be identified an inline expansion candidate.

Achievement Expected:

a) If the cost of the called routine is low, it may help the caller loop to be

vectorized and further optimized.

b) If the cost of the called routine is high, when tuned it may help improve its

performance combined with its caller.

c) If the cost of the called routine is high, but not tuned, its high cost will add

up to the cost of the caller and may not contribute to overall performance

gain.

Inline expansion may cause a prominent re-ordering in the costs of functions of

the original program. Hence, it is recommended to perform inline expansion

before proceeding to other optimization strategies.

 Automatic Inline expansion

The compiler chooses the appropriate functions and tries to inline them

automatically when corresponding compiler option is specified.

 Explicit Inline expansion

The compiler tries to automatically inline a function that is called in a statement

after the inline expansion directive (that is specified together with the inline

expansion directive).

When the number of calls to the subroutine are very large and the average time

per call is relatively small, consider inline expansion. If not, then better not to specify

as the cost will be added to the parent/caller routine.

After the inline expansion, the inline expanded routines are now included as part of the caller

routines.

 FTRACE ANALYSIS LIST

Execution Date : Tue Feb 19 12:23:39 2019 JST

Total CPU Time : 0:05'31"547 (331.547 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 16008 176.431(53.2) 11.021 1365.0 0.0 27.44 254.0 4.345 84.385 0.738 95.05 SUB01

 37650816 71.194(21.5) 0.002 35742.3 11539.4 97.93 246.9 56.919 10.218 0.000 99.97 SUB02

 4706352 47.946(14.5) 0.010 9169.6 5266.6 89.40 246.9 5.535 23.156 0.000 99.97 SUB03

 18825408 20.172(6.1) 0.001 10260.1 3914.7 95.00 246.7 5.839 9.834 0.000 99.94 SUB04

 9412704 8.020(2.4) 0.001 60934.6 39371.2 98.22 230.9 5.105 1.229 0.000 99.81 SUB05

 10693344 3.760(1.1) 0.000 972.9 0.0 0.00 0.0 0.000 1.708 0.000 0.00 SUB06

 8132064 2.407(0.7) 0.000 1162.3 0.0 0.00 0.0 0.000 0.949 0.000 0.00 SUB07

 16008 1.334(0.4) 0.083 30481.5 23625.6 98.97 252.7 1.198 0.026 0.000 94.41 SUB08

 8 0.118(0.0) 14.750 1037.0 5.5 10.03 252.3 0.000 0.000 0.000 100.00 SUB09

 1 0.115(0.0) 114.572 744.8 7.6 0.01 229.0 0.000 0.049 0.000 0.00 SUB10

 32016 0.049(0.0) 0.002 33744.0 16414.2 98.06 246.9 0.038 0.008 0.000 99.23 SUB11

 8 0.000(0.0) 0.001 20920.9 0.0 95.19 250.1 0.000 0.000 0.000 0.00 SUB12

 8 0.000(0.0) 0.000 880.6 0.0 0.00 0.0 0.000 0.000 0.000 0.00 SUB13

 89484745 331.547(100.0) 0.004 11973.5 4527.6 92.31 245.1 78.979 131.562 0.738 99.80 total

 FTRACE ANALYSIS LIST

Execution Date : Tue Feb 23 14:33:32 2019 JST

Total CPU Time : 0:02'09"983 (129.983 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME

 TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

 4706352 94.024(72.3) 0.020 38555.8 15621.1 98.48 244.9 75.580 13.927 0.000 99.96 SUB03

 16008 34.331(26.4) 2.145 2815.5 0.0 68.38 254.0 4.423 15.960 0.738 95.16 SUB01

 16008 1.334(1.0) 0.083 30461.5 23609.6 98.97 252.7 1.198 0.030 0.000 94.55 SUB08

 1 0.123(0.1) 122.810 695.6 7.1 0.01 229.0 0.000 0.055 0.000 0.00 SUB10

 8 0.120(0.1) 14.961 1036.3 5.4 9.96 252.2 0.000 0.000 0.000 100.00 SUB09

 32016 0.051(0.0) 0.002 32922.0 16014.3 98.06 246.9 0.038 0.011 0.000 99.00 SUB11

--

 4770393 129.983(100.0) 0.027 28960.4 11548.3 97.66 245.1 81.238 29.982 0.738 99.80 total

Tuning Approach 2:

In order to choose the correct optimization approach for a code, one must refer to the

diagnostic list to understand which parts of the code are inhibiting optimization.

Eg: Refer to the Diagnostic list below

…corresponding to the below code:

Here, diagnostic list helps us to understand that the loop beginning at line no. 727 failed to

be auto-vectorized completely by the compiler. The code is then analyzed by the programmer

and optimization scheme is chosen. Suitable schemes here:

 - Compiler Directive

 - Loop-collapse

 - Loop-split

 - Inline expansion of routine calls

The effect is confirmed by looking at the diagnostic list. For the example above, the diaglist

now looks as below:

LINE DIAGNOSTIC MESSAGE
701: vec(101): Vectorized loop.
727: vec(102): Partially vectorized loop.
729: opt(1036): Potential feedback - use directive or compiler option if OK.
732: vec(122): Dependency unknown. Unvectorizable dependency is assumed.: r_arr

LINE LOOP STATEMENT

701: V------> do j = 1, n

702: | r_arr(j) = 0

703: | mark(j) = .false.

704: V------ enddo

705: r_arr(n+1) = 0

 :

727: S------> do i = 1, n

728: | j = rows(i) - f + 1

729: | k = r_arr(j)

730: | a(k) = ref_array(i)

731: | c_arr(k) = cols(i)

732: | r_arr(j) = r_arr(j) + 1

733: S------ enddo

LINE LOOP STATEMENT

 701: V------> do j = 1, n

 702: | r_arr(j) = 0

 703: | mark(j) = .false.

 704: V------ enddo

 705: r_arr(n+1) = 0

 :

 727: cNEC$ ivdep

 728: V------> do i = 1, n

 729: | j = rows(i) - f + 1

 730: | G k = r_arr(j)

 731: | C a(k) = ref_array(i)

 732: | C c_arr(k) = cols(i)

 733: | C r_arr(j) = r_arr(j) + 1

 734: V------ enddo

 LINE DIAGNOSTIC MESSAGE
 701: vec(101): Vectorized loop.
 707: vec(102): Partially vectorized loop.
 728: vec(101): Vectorized loop.

Tuning Approach 3:

When a routine has been identified as high cost has several loops, it is important to

understand which loop or segment of that function is contributing most to the execution time.

In this situation, it is recommended to use the ftrace-region profiler extension. Each loop can

be enclosed within a user-defined region. The report can easily specify the highest-cost loop

within the high-cost routine.

Refer to the PROGINF/FTRACE User’s Guide for detailed instructions.

Chapter4 Performance Optimization

Optimization is a very broad term. In general, it implies transforming the code to make some

of its aspects to work more efficiently or use fewer resources or be more robust. For example,

a program may be optimized so that it will execute faster or use less memory or in case of

NEC SX-Aurora TSUBASA, use the vector resources more efficiently.

The principle is to make a program more efficient and quicker without changing its output or

effects. The process of optimization does not necessarily produce a totally optimal system.

There's always a trade-off, so only the most lucrative attributes are chosen to be optimized.

Example of code optimization:

Example (C/C++):

ORIGINAL OPTIMIZED

:

 x = y % 32;

 x = y * 8;

 x = y / w + z / w;

 if(a==b &&c==d &&e==f) {...}

 if((x &1) || (x &4)) {...}

 if(x>=0 &&x<8 &&

 y>=0 &&y<8) {...}

 if((x==1) || (x==2) ||

 (x==4) || (x==8) || ...)

 if((x==2) || (x==3) || (x==5) ||

 (x==7) || (x==11) || (x==13) ||

 (x==17)|| (x==19)) {...}

.

.

:

 x = y & 31;

 x = y <<3;

 x = (y + z) / w;

 if(((a-b)|(c-d)|(e-f))==0) {...}

 if(x & 5) {...}

 if(((unsigned)(x|y))<8) {...}

 if(x&(x-1)==0 &&x!=0)

 if((1<<x) &

((1<<2)|(1<<3)|(1<<5)|

(1<<7) |(1<<11)|(1<<13)

|(1<<17)|(1<<19))) {...}

.

.

Example (FORTRAN) :

ORIGINAL OPTIMIZED

do i=1,n ! column indexing

 do j=1,n

 a(i,j) = a(i,j) + b(i,j)*c(i,j)

 end do

end do

do j=1,n ! row indexing

 do i=1,n

 a(i,j) = a(i,j) + b(i,j)*c(i,j)

 end do

end do

4.1 Performance gain through Parallelization

Parallel computing techniques can help reduce the time it takes to reach a solution. To derive

the full benefits of parallelization, it is important to choose an approach that is appropriate

for the optimization problem.

Few frameworks are widely used nowadays to achieve parallelization. Let’s discuss some of

those:

4.1.1 OpenMP

OpenMP is a specification for a set of compiler directives, library routines, and environment

variables that can be used to specify high-level parallelism in Fortran and C/C++ programs.

In order to parallelize a code, programmers look for regions of code whose instructions can

be shared among the processors. Much of the time, they focus on distributing the work in

loop nests to the processors. In most programs, the code executed on one processor requires

results that have been calculated on another one. In principle, this is not a problem because

a value produced by one processor can be stored in main memory and retrieved from there

by code running on other processors as needed. However, the programmer needs to ensure

that the value is retrieved after it has been produced, that is, that the accesses occur in the

required order. Since the processors operate independently of one another, this is a nontrivial

difficulty: their clocks are not synchronized, and they can and do execute their portions of

the code at slightly different speeds.

A number of compilers from various vendors or open source communities implement the

OpenMP API.

In case of NEC SX-Aurora TSUBASA environment, OpenMP is supported by the compilers ncc,

nfort by specifying the switch -fopenmp at compilation.

Compilation syntax on NEC SX-Aurora TSUBASA:

Refer to the Fortran Compiler User’s Guide for detailed instructions on how to use OpenMP.

4.1.2 Message Passing Interface (MPI)

The Message-Passing Interface (MPI) is a specifications standard that supports coding of

distributed memory parallel programs by means of message passing (point-to-point and one-

sided) and collective communication operations among processes.

NEC MPI is an implementation of MPI Version 3.1, which uses shared memory feature of a

% nfort -fopenmp -c a.f

% ncc -fopenmp -c b.c

VH, and InfiniBand functions for communication to achieve high-performance communication.

The Fortran compiler (nfort), C compiler (ncc), or C++ compiler (nc++) support compilation

and linking of MPI programs. NEC MPI does not support communication in heterogeneous

environments (for example, communication among processes that run on different multiple

systems).

Refer to the NEC MPI User Guide for detailed instructions on how to use MPI for parallelization.

4.2 Performance gain through Vectorization

The most important consideration in completely utilizing the high-speed features of the VE is

to maximize the vectorization ratio of the part processed by vector instructions followed by

improving the efficiency of generated vector instructions.

This section gives suggestions on how to rewrite programs by using these tools to obtain

improved performance.

4.2.1 Vectorization

Variables and single elements of an array are examples of scalar data. When arranged in a

sequence such as a line, column, or diagonal of a matrix, is known as vector data. An ordinary

processor has instructions (called scalar instructions) that can execute operations on only one

data item at a time.

The Vector Engine has advanced vector instruction sets that are capable of applying

operations (ADD, MUL, etc.) simultaneously to multiple operands (or vector data), while

scalar processors can only operate on pairs of operands at once. In order to take full

advantage of the features of the Vector Engine, vector instructions are preferable to scalar

instructions because they are much faster. Vectorization is the process of replacement of

scalar instructions with vector instructions, thereby converting a scalar program to a vector

program.

In a typical C/C++ or FORTRAN program, a conversion from scalar to vector is typically

targeted at vectorizable subjects like array expressions and loop structures. So, to vectorize

a loop means to represent the loop such that it processes LVL elements out of total N

elements of the array simultaneously N/LVL times (where LVL is the Vector Length – 256 for

VE), instead of processing a single element of an array N times.

Scalar Approach Vector Approach

for (i = 0; i < 1024; i++)

{

 C[i] = A[i]*B[i];

}

for (i = 0; i < 1024; i++)

{

 C[i] = A[i]*B[i];

}

Is Vectorization a similar concept to Loop Unrolling?

The answer is No.

Consider the following very simple loop that adds the elements of two arrays and stores the

results to a third array.

Original Loop Unrolled

for (int i=0; i<1024; ++i)

 C[i] = A[i] + B[i];

for (int i=0; i<1024; i+=256) {

 C[i] = A[i] + B[i];

 C[i+1] = A[i+1] + B[i+1];

 C[i+2] = A[i+2] + B[i+2];

 :

 C[i+255] = A[i+255] + B[i+255];

 }

This same simple loop, however, when vectorized will be interpreted as below:

Original Loop Vectorized

for (int i=0; i<1024; ++i)

 C[i] = A[i] + B[i];

for (int i=0; i<1024; ++i)

 compilerInstrinsic(&C[i], &A[i], &B[i]);

Here, "compilerIntrinsic" is what the compiler uses to specify vector instructions for addition.

In case of vectorization, there are more registers available in the hardware to perform the

operation and the compiler enables vector instructions for the operation to execute faster

than a series of scalar instructions corresponding to the unrolled loop.

Automatic Vectorization is the process of generating vector instructions at compile time for a

program by the compiler. This conversion from scalar to vector MUST guarantee the

safeguarding of exact program behavior.

Vector Engine has advanced automatic vectorization functions. The programmer need not

revise a program using standard language since the compiler automatically analyzes the

source program to detect parts that can be executed by vector instructions, and generates

the vector version automatically. The programmer also need not be aware of architecture

specific instructions in order to make full use of the power of Vector Engine.

To facilitate tuning, compiler switches and compiler directives can be used to give the compiler

some information that it cannot obtain from the source program by itself. By using these

functions effectively, one can take good advantage of the power of VE.

4.2.2 Basic Conditions for Vectorization

The following sections describe the conditions needed for vectorization.

 Vectorization Subjects

Array expressions and loop structures are vectorization subjects. A loop structure consists of

a DO construct or an IF construct and a GOTO statement. There are no constraints on the

format of an array expression.

(1) Loop structure must satisfy the following conditions:

(2) The loop must have a single entrance and single exit.

(3) The iteration count for the loop must be determined before the loop is entered.

(4) The compiler determines that the following loop structure satisfy these conditions.

(5) For a DO construct, no statements can pass the control of the program from

inside the loop to outside.

The index-variable and the loop control variable:

‒ Must be a 4-byte, 8-byte, or integer type scalar variable,

‒ Must not associated with other variables defined in the loop

‒ Must be defined once in the loop body.

(6) The increment parameter must be a constant and the relational operation must

be .LT. / .LE. / .GT. / .GE.

The following are examples of vectorizable DO loops.

Example 1 Example 2

DO I=1,N

 X(I)=Y(I)*Z(I)

ENDDO

DO WHILE(I.LT.10)

 I=I+1

 X(I)=Y(I)*Z(I)

ENDDO

The following are examples of DO loops that are not vectorizable.

Example 1 Example 2 Example 3

Reason: loop control

variable is defined twice

in the loop body

Reason: loop control

variable is not a type

integer

Reason: relational

operation is does not

satisfy the conditions.

DO WHILE(I.LT.10)

 I=I+1

 IF(X(I).LT.0.0)

 I=I+1

ENDDO

DO WHILE(R.LT.10.0)

 R=R+1.0

ENDDO

DO WHILE(I.NE.10)

 I=I+1

ENDDO

DO WHILE(I.GT.0)

 I=I+1

ENDDO

For an IF construct, no statements can pass the control of the program from inside the loop

to outside. The following are examples of vectorizable IF loops.

Example 1 Example 2

10 IF(I.GT.10) GOTO 20

 I=I+1

 :

 GOTO 10

20 CONTINUE

10 J=J+1

 :

 IF(J.LT.10)

 GOTO 10

The following are examples of DO loops that are not vectorizable.

Example 1 Example 2 Example 3

Reason: Scalar logical

expression conditions are not

satisfied.

Reason: Control structure

does not satisfy conditions

Reason: Relationship of

increment parameter of

loop-control-variable to

scalar-logical-expression

does not satisfy conditions.

10 IF(X(I).LT.0.0) GOTO 20

 I=I+1

 :

 GOTO 10

20 CONTINUE

10 X(I)=Y(I)*Z(I)

 IF(I.GT.10) GOTO 20

 I=I+1

 :

 GOTO 10

20 CONTINUE

10 IF(I.NE.10) GOTO

20

 I=I+3

 :

 GOTO 10

20 CONTINUE

 Vectorizable Statements

An array expression is subject to vectorization for all executable statements it appears

in. The following executable statements are subject to vectorization when they appear

in a loop structure that is subject to vectorization.

Assignment statements

CONTINUE

GOTO

IF

SELECT

DO

CYCLE

IF THEN

CASE

ENDDO

EXIT

ELSE

CASE

ELSE IF

END SELECT

END IF Arithmetic IF

statement

The following executable statements are not subject to vectorization.

WHERE

WRITE

RETURN

CALL

ENDWHERE

READ

ELSEWHERE

PRINT

NOTE: The WHERE, ENDWHERE, and ELSEWHERE statements are vectorized as array

expressions. If the following executable statements appear in a loop structure, the loop

is not vectorized.

Assigned GOTO statement

Computed GOTO statements

Pointer assignment

statements

STOP

PAUSE

OPEN, CLOSE, REWIND,

BACKSPACE, ENDFILE, INQUIRE

ALLOCATE

DEALLOCATE

NULLIFY

 Vectorizable Types

The following types can be vectorized.

4-byte integer types

8-byte integer types

Real types

Double-precision real types

Complex types

Double-precision complex types

4-byte logical types

8-byte logical types

2-byte integer types, quadruple-precision real types, quadruple-precision complex

types, single-byte logical types, character types, and derived types are not subject to

vectorization.

 Vectorizable Operations and Assignments

The intrinsic operations that are subject to vectorization are:

(1) Numeric

(2) Logical

(3) Numeric relational

An operand must be a constant, scalar variable, structure component, or array element

whose type can be vectorized, an argument of an intrinsic function that can be vectorized, or

an expression that can be vectorized.

Character intrinsic operations, character relational intrinsic operations, and defined operations

cannot be vectorized.

The intrinsic assignments that can be vectorized are:

(1) Numeric

(2) Logical

The left-hand side of the assignment statement must be a variable that can be vectorized.

Character intrinsic assignments, pointer assignments, and defined assignments can be

vectorized.

 Vectorizable Procedures

(1) Some intrinsic functions referenced in a loop or an array expression are replaced

by vector versions.

(2) Some intrinsic functions are unvectorizable and the loop that references them is

partially vectorized.

(3) When other procedures appear within a loop, the entire loop is not vectorized.

(4) A SPLIT compiler directive is supplied to partially vectorize a loop which

references those procedures.

Refer to Fortran Compiler User’s Guide for a list of supported intrinsic functions.

 Vectorizable Control Structures

A WHERE structure is subject to vectorization as a whole. IF constructs and CASE

constructs in a loop structure are subject to vectorization. If there is a large number

of CASE blocks in a CASE construct, the entire loop may not be subject to vectorization.

A branch within a loop structure is vectorized if the branch target comes after the

branch. If the target comes before the branch (called a backward branch), then all

statements in the range from that branch to the branch destination are not subject to

vectorization.

If a backward branch constitutes a vectorized loop structure, the branch is subject to

vectorization.

The following are examples of backward branching.

Example 1

 DO I=1,N

 :

10 CONTINUE

 :

 IF(X(I).GT.0.0) GOTO 10

 :

 ENDDO

Below is a backward branch that constitutes a loop

Example 2

 DO I=1,N

 :

10 CONTINUE

 :

 I=I+1

 IF(I.LT.10) GOTO 10

 :

 ENDDO

4.2.3 Data Dependency Conditions

When a loop structure is vectorized, the order in which operations execute after vectorization

differs from the order in which they execute before vectorization. If a loop is to be vectorized,

the order of defining and referencing variables and array elements that appear within the

loop must not be changed even when they are vectorized. The conditions on the relationship

between defining and referencing a vectorizable variable are as follows.

If the same variable appears more than once in the loop, then either all the occurrences of

the variable must be references, or the definition must precede the reference on all execution

paths in the loop. If elements associated by the EQUIVALENCE statement appear more than

once in the loop under different names, all of them must appear only as references. A macro

operation such as inner product, element sum, maximum value, or minimum value may be

vectorized even if the above condition is not satisfied.

Example 1: Reference preceding definition

DO I=1 ,N

 A(l)=X

 X=B(I)+C(I)*D(I)

END DO

This range is not vectorized

This range is subject to vectorization

as an inner loop.

Example 2: Definition always preceding reference

DO I=1,N

 X=

 Z=

 IF()THEN

 Y=

 =Y

 ELSE

 =X

 END IF

 =Z

END DO

An index variable is an exception to this rule. An index variable is an integer variable that is

either:

 A DO variable, or

 An integer variable whose value changes by a constant increment at each loop

repetition, and is defined at only one place in the loop.

Example: I, J, and K are index variables

DO I=1 ,N

 J=J+1

 K=I+3

 .

 .

 .

END DO

If the same array element appears more than once in the loop, the relationship between its

definition and reference must be maintained after vectorization. This condition must be

satisfied because the execution order of statements is changed by vectorization. The following

example shows how vectorization can change the relationship between array definitions and

references, producing incorrect results.

Example

DO I=1, 6

 A(I)=3 .0

 B(I)=A(I+1)

END DO

Execution order when the example loop is

not vectorized

A(1)=3.0

B(1)=A(2)

A(2)=3.0

B(2)=A(3)

A(3)=3.0

B(3)=A(4)

 .

 .

 .

 .

Execution order when the example loop is

vectorized

 A(1)=3.0

 A(2)=3.0

 A(3)=3.0

 .

 .

 B(1)=A(2)

 B(2)=A(3)

 B(3)=A(4)

 .

 .

To maintain the correct relationship between array element definitions and references after

vectorization, one of the following conditions must be satisfied.

Condition A: The array elements are not defined in the loop and are only referenced.

Condition B: If an array is defined at a point, it is not defined or referenced at any other point.

If the array is defined or referenced at another point, elements defined or referenced there

are completely different from the former.

Condition C: If an element of the array is defined in each iteration of the loop, or is defined

and referenced, the order of the definitions and references must be in an order such that the

compiler can resolve them. In other words, if the array element is defined in the pth

statement of a loop and referenced in the qth statement of the same loop, then the loop

variables i and j should be related as:

 i > j  when p > q and i ≠ j

 i < j  when p < q and i ≠ j

When the array element is defined and referenced in the same statement, then

 i > j  when p = q and i ≠ j

Please note that there is no problem if both array elements are defined, or are defined and

referenced in the same iteration (i=j).

Although the compiler can easily determine whether the Condition A is satisfied, it cannot

always determine whether the conditions B or C are satisfied. The compiler can determine

whether conditions B and C are satisfied as follows:

 For a pair of array elements whose subscript values are different and also constant as

the DO loop progresses, condition B is satisfied.

 For array elements having linear subscripts, condition B or C is satisfied under these

conditions:

(1) A pair of array elements whose subscript values increment as iteration of the loop

progresses.

(2) The subscript value of the array element in the preceding statement is greater

than or equal to the subscript value of the array element included in the later

statement.

 At the second iteration, the subscript value of array A is 2 in the first statement and 3 in

the second statement. Accordingly, conditions (2) and (3) are not satisfied.

Example

DO I=1,N !Loop not vectorized

 A(I)=

 =A(I+1)

END DO

 For a pair of array elements whose values decrease as iteration of the loop progresses,

the reverse is obtained. Since the subscript values of array elements A(I) and A(I+l)

both decrement, and the subscript value of the array element included in the later

statement is apparently larger, condition (3) is satisfied.

Example

DO I=1,N,-1 !Loop vectorized

 A(I)=

 =A(I+1)

END DO

 For a pair of array elements where one subscript value increments and the other

decrements (or either of the subscript values is constant as the loop progresses), if the

relationship of their subscript values does not change as iteration of the loop progresses,

condition (2) is satisfied.

 If an array element having a nonlinear subscript is included in the definition and/or

reference, conditions (2) and (3) are not satisfied.

 If array elements associated by the EQUIVALENCE statement are included more than

once in the loop under different names, and if at least one of them is included in a

definition, conditions (2) and (3) are not satisfied. If possible, make the names the same

and then check conditions (2) and (3).

 When the compiler cannot determine whether conditions are satisfied, it concludes that

the conditions are not satisfied.

(1) If the compiler cannot determine whether the relationship between definition and

reference is maintained correctly, the user can inform the compiler that the

relationship is correctly maintained by using a compiler directive.

(2) A linear subscript is an expression that satisfies the following conditions:

‒ It is of the integer type.

‒ It contains only addition, subtraction, multiplication, and exponentiation, in

which the base is not an index variable and the exponent is an unsigned integer

constant.

‒ Only one index variable appears in each dimension.

‒ It does not contain parentheses.

‒ It contains only constants, index variables, and relative constants. A relative

constant is one of the following:

a) A variable or array element that is only referenced in the loop

b) An intrinsic function that has only a constant or relative constant as an actual

argument (except for the intrinsic functions that generate random numbers).

NOTE: Vectorization can be done even if the preceding conditions are not satisfied,

provided the operation is an iteration type. Automatic modification can also be

performed to satisfy the preceding conditions for vectorization by replacing statements

or using work vectors.

A vector with a linear subscript is processed as a continuous or constant stride vector.

The subscript expression is nonlinear if it does not satisfy these conditions, and the

subscript value changes during loop iteration. A vector with a nonlinear subscript is

processed as a list vector. Figure 1 shows vector types.

Figure 1 Types of Vectors

The following examples show the relationship between definition and reference when

maintained correctly.

Example 1:

Only references

appear in the loop

Example 2:

A(I) and A(I+l) do not overlap

Example 3:

A(I) and A(I+1)

may overlap

Example 4:

A(I) and A(I+1) may

overlap

DO 1=1,N

 =A(I)

 =A(I+1)

END DO

DO 1=1,N,2

 =A(I) !A(1),A(3),..

 A(I+1)= !A(2),A(4),..

END DO

DO I=1,N

 =A(I+1)

A(I)=

END DO

DO I=N,1,-1

 =A(I)

 A(I+1)=

END DO

In Example 3 and 4, the relationship between definition and reference is maintained correctly

after vectorization, despite possible overlap.

The following examples show the relationship between definition and reference when not

correctly maintained.

Example 1 Example 2 Example 3

DO I=1,N

 =A(I)

 A(I+1)=

END DO

DO I=N,1,-1

 A(I)=A(I+2)*B(I)+C(I)

END DO

DO 1=1,N

 A(2*I+3)=

 A(3*I-1)=

END DO

The following examples show how the compiler cannot determine whether the relationship

between definition and reference is maintained correctly.

Example 1 Example 2

If K is greater than zero, the relationship is

maintained correctly, but the compiler

cannot determine this.

If L is equal to or less than zero, the

relationship is maintained correctly, but the

compiler cannot determine this.

DO I=1,N,K

 A(I)=A(I+2)+C(I)

END DO

DO I=1,N

 A(I) =

 = A(I+L)

END DO

4.2.4 Improving the Vectorization Ratio

There are three major ways to raise the vectorization ratio:

 Locate loops that were eligible for vectorization, but have not been vectorized or

were only partially vectorized. Remove the cause of non-vectorization so that the

part can be vectorized.

 Find vectorizable parts that are not eligible for vectorization and rewrite the program

so that they can be vectorized keeping strict focus on maintaining the program

behavior.

 Revise the algorithms used for a part of or the entire the program to make them

suitable for vectorization.

In the first two techniques, the program is revised to a limited extent while maintaining its

structure and algorithms. When that approach is ineffective, the program should be reviewed

to see if there are other algorithms more suitable for vectorization. When algorithms used in

a program are not suitable for vectorization, the third technique has much greater effect.

This section explains the first two techniques from the programming standpoint.

The vectorization ratio can be improved by removing the cause of non-vectorization. When

loops are eligible for vectorization, but are not vectorized or are only partially vectorized by

the compiler, the cause is indicated in a vectorization diagnostic message. The user may be

able to raise the vectorization ratio by removing the cause. The following typical examples

show how these conditions can be removed.

 Loops in which the compiler cannot determine whether the correct dependency

between definition and reference would be maintained.

Example 1

ORIGINAL VECTORIZED

DO J=1,N

 X(J-1)=X(J-1)-X(JW)*Y(J)

 JW=JW+1

END DO

!NEC$ ivdep(X)

DO J=1,N

 X(J-1)=X(J-1)-X(JW)*Y(J)

 JW=JW+1

END DO

In this example, the compiler cannot determine whether the correct dependency between

definition and reference (X(J-1) on the left side and X(JW) on the right side) would be

maintained because the initial parameter of JW is unknown. If the correct dependency can

be maintained, the following vectorization directive ‘ivdep’ may be placed immediately before

the DO loop.

In the following example, the compiler cannot determine whether the correct dependency

between definition and reference of H(IX(I)) would be maintained by vectorization.

Example 2

ORIGINAL VECTORIZED

DO I=1,N

 IX(I)=IA(I)-IB(I)*IC(I)

 H(IX(I))=H(IX(I))+1.0

END DO

!NEC$ ivdep(H)

DO I=1,N

 IX(I)=IA(I)-IB(I)*IC(I)

 H(IX(I))=H(IX(I))+1.0

END DO

If all N values from IX(1) to IX(N) are different, the correct dependency between definition

and reference of H(IX(I)) is maintained by vectorization, so the entire loop can be vectorized

by inserting the following vectorization directive immediately before the loop.

 Loops containing user defined procedure references to one of the following methods

can be used to vectorize loops containing external, internal or module procedure

calls.

(1) Inline expansion

Expand the procedure directory at the point of reference. The automatic inline

expansion function is supplied for this.

Example

ORIGINAL VECTORIZED THROUGH INLINE EXPANSION

DO I=l,N

 CALL MAT(A(I),B(I),C(I),D(I),X,Y)

ENDDO

SUBROUTINE MAT(S,T,Y,V,A,B)

 A=S*U+T*V

 B=S*V-U*T

 RETURN

END

DO I=l,N

 X=A(I)*C(I)+B(I)*D(I)

 Y=A(I)*D(I)-B(I)*C(I)

ENDDO

(2) SPLIT compiler directive

If the procedure satisfies the following conditions, the SPLIT compiler directive can be

applied to the loop to vectorize.

‒ No STOP, PAUSE or input-output statements.

‒ Elements in common blocks or variables referenced in the loop are not

accessible by the user, host, or pointer association in the procedure.

‒ Elements in common blocks and variables accessible by the user, host, or

pointer association in the procedure are not defined in the loop.

‒ The dummy arguments that correspond to array elements, specified as actual

arguments, are all scalar variable names.

‒ No pointer associations are changed.

‒ No function arguments are defined.

‒ Function does not have a pointer attribute.

‒ The result of the procedure does not depend on execution time or count.

‒ Does not have an alternate return asterisk in a dummy argument.

CAUTION: If SPLIT is applied to a loop containing a procedure call that does not satisfy

the conditions, the loop will be vectorized, but may produce incorrect results.

4.2.5 Improving Vector Instruction Efficiency

When a DO loop is vectorized, it executes faster, but the speed-up depends on the types of

vector instructions generated, the loop iteration count (also called the loop length or vector

length), and the array reference patterns.

4.2.6 Lengthening the Loop

Before a vectorized loop is executed, some preparatory processing must be accomplished for

each vector instruction before the arithmetic begins. Since the processing time (start-up time)

is almost constant regardless of the loop length, if the loop length is small and the actual

vector arithmetic operations are not lengthy, the effect of start-up time significantly reduces

the efficiency of vectorization.

The cross length is the loop length at which the execution times of the vectorized and

unvectorized loops are equal. In case of VE the crossover length usually varies from 5 to 10,

depending on conditions.

To maximize the effect of vectorization, therefore, the loop length should be made as long as

possible. See the following figure.

Figure 2 Start-Up Time and Cross Length

 In nested loops, interchange loops by interchanging rows and columns in a matrix, to

maximize the length of the innermost loop.

Example

ORIGINAL LOOPS INTERCHANGED

DO J=1,N ! N=10000

 DO I=1,M ! M=10

 A(I,J)=X*B(I,J)+C(I,J)

 END DO

END DO

DO I=1,M ! M=10

 DO J=1,N ! N=10000

 A(I,J)=X*B(I,J)+C(I,J)

 END DO

END DO

 Collapse a multiple loop to a single loop by converting a multidimensional array to a one-

dimensional array. The compiler performs such transformations, when the loop

interchange or loop collapsing function is enabled.

4.2.7 Improving Array Reference Patterns

Depending on how vector data is arranged, a vector can be continuous, constant stride, or a

list vector. To process data by vector instructions, a vector must be loaded from memory and

stored again after processing. It does not always take the same time to load a vector and

write it to memory again.

Loading and storing speed is highest for a continuous or a constant stride vector with odd

stride (the interval between elements is an odd number).

Figure 3 Constant stride vector

A constant stride vector whose element interval expressed as m*2n is even, is loaded and

stored as follows

(m= odd number, n = 0, 1, 2, 3 ...).

 4-byte data

Load and store speeds are highest when n is 1 (interval: m * two elements) or less. When n

is greater than 2, speed slows as n increases.

 8-byte data

Load and store speeds are highest when n is 0 (interval: m * one element). When n is greater

than 1, speed slows as n increases. The fall-off in speed is due to bank contention.

Since the speed of list vector loading and storing varies depending on bank contention, the

speed is slower than for contiguous vector processing.

The following points should be noted.

 Array elements in a loop to be vectorized should be referenced so that the index variables,

such as the loop index variables, appear in the first dimension wherever possible. The

values of subscript expressions should increment or decrement by 1 (or an odd number)

at each loop iteration.

Example

ORIGINAL OPTIMIZED

REAL,DIMENSION (100,100) :: A, B, C

 :

 :

DO I=1,N

 DO J=1,N

 A(I,J)=B(I,J)+X*C(I,J)

 END DO

END DO

REAL, DIMENSION (100,100) :: A, B, C

 :

 :

DO J=1,N

 DO I=1,N

 A(I,J)=B(I,J)+X*C(I,J)

 END DO

END DO

 If an index variable appears in the second dimension of a two-dimensional array (or a

higher dimension, in general), the size of the first dimension should be longer in the

array declaration.

Example

ORIGINAL OPTIMIZED

REAL, DIMENSION (1024,1024) :: A, B

 :

 :

DO K=1,N

 S=S+A(I,K)*B(K,J)

END DO

REAL, DIMENSION (1056,1024) :: A, B

 :

 :

DO K=1,N

 S=S+A(I,K)*B(K,J)

END DO

 The index variable should appear in the first dimension if possible, and should increment

or decrement by 1.

 When an array is used as a list vector and it is referenced by the same subscript several

times, the programmer should provide and use a work array, to transfer necessary data

in advance. If necessary, data can be returned to the original array after processing.

Example

 = A(IX(I))

 : This array is referenced

 : in the form of A(IX(I))

 = A(IX(I)) repeatedly.

 :

 :

DO I=1,N

 WA(I)=A(IX(I))

END DO

 =WA(I)

 :

 :

 =WA(I)

 :

 :

In this example, correct results are not obtained if there are definitions for A(IX(I)). Elements

with different IXs can have the same value.

4.2.8 Removing IF Statements

By using the vector mask, compress, and expand functions, the compiler is able to vectorize

loops that contain IF statements. When a loop is vectorized by masked vector operations, the

execution time is the same as when they are not masked. See the following example.

Example 1 Example 2

ORIGINAL OPTIMIZED

DO I=1,1000

 IF(e)THEN

 A(I)=B(I)*C(I)

 END IF

END DO

DO I=1,1000

 A(I)=B(I)*C(I)

END DO

The assignment statements in both examples take the same execution time. Additional time

for generating a mask is also required in Example 1. Furthermore, if e is true only 1% of the

time, multiplication and assignment are carried out only 10 times when the loop is not

vectorized. However, it takes the time required for vector arithmetic on all 1000 elements

when the loop is vectorized. This significantly reduces the effect of vectorization.

The compress and expand functions avoid this problem. However, they do not raise the

efficiency significantly, because it takes time for compression and expansion. For this reason,

the compiler uses these functions only when several operations are carried out, such as when

the loop contains intrinsic functions.

Removing IF statements can raise the efficiency of vectorization. The following examples

illustrate this.

 Whenever IF statements are used to avoid unnecessary operations as shown, simply

remove them.

Example 1 Example 2

DO I=1,N

 IF(A(I).NE.0.0)THEN

 D(I)=A(I)*(B(I)+C(I))

 ELSE

 D(I)=0.0

 END IF

END DO

DO I =1,N

 D(I)=A(I)*(B(I)+C(I))

END DO

 Move special processing, performed only at a particular iteration count, outside the loop.

Example 1

ORIGINAL SIMILAR TO ORIGINAL OPTIMIZED

DO I=1,N

 α

 IF(I.EQ.K)THEN

 β

 END IF

 γ

END DO

DO I=1,K-1

 α

 γ

END DO

I=K

 α

 β

 γ

DO I=K+1,N

 α

 γ

END DO

DO I=1,N

α

γ

END DO

I=K

α

β

γ

 Compression and expansion outside the loop and use of list vectors

When IF statements are used to avoid unnecessary operations on irrelevant data, such as

zeros in a sparse matrix, they can be removed. Use compression to do this by gathering only

the relevant data in consecutive work array in advance. Arithmetic operations are performed

on these work arrays in the loop, then the data from the work array are returned to the

original array (expansion).

Example 1

ORIGINAL OPTIMIZED

DO I=1,N

 IF(A(I).NE.0.0)THEN

 C(I)=A(I)*SIN(B(I))

 :

 :

 END IF

END DO

K=0

DO I=1,N

 IF(A(I).NE.0.0)THEN

 K=K+1

 IX(K)=I

 AA(K)=A(I) ! Compression

 BB(K)=B(I)

 :

 :

 END IF

END DO

DO I=1,K

 CC(I)=AA(I)*SIN(BB(I))

 :

 :

END DO

DO I=1,K

 C(IX(I))=CC(I)

 :

Expansion

 :

END DO

Another method is to generate vectors containing only the indexes of the relevant data (list

vectors) without performing data compression and expansion. These vectors can then be

used as subscripts directly in the loop.

Example 2

ORIGINAL OPTIMIZED

DO I=1,N

 IF(A(I).NE.0.0)THEN

 C(I)=A(I)*SIN(B(I))

 :

 :

 END IF

END DO

K=0

DO I=1,N

 ! Generation of list vector

 IF(A(I).NE.0.0)THEN

 K=K+1

 IX(K)=I

 END IF

END DO

DO I=1,K

C(IX(I))=A(IX(I))*SIN(B(IX(I)))

:

:

END DO

If the number of arithmetic operations on the compressed elements is significant,

compression and expansion is more efficient. If the number is small, using list vectors is more

efficient. Data compression and expansion should be performed before and after a block of

processing, instead of at each loop.

4.2.9 Avoiding Iterative Operations

Iterative operations are vectorized by using special vector instructions, but these vector

instructions, although faster than scalar instructions, are slower than other vector instructions.

Therefore, they should be avoided whenever possible.

Example

ORIGINAL OPTIMIZED

DO I=1,M ! No vector iterative operation

 DO J=1,N ! Vector iterative operation

 A(I,J+1)=X(I,J)-T(I,J)*A(I,J)

 END DO

END DO

DO J=1,N ! Vector iterative operation

 DO I=1,M ! No vector iterative operation

 A(I,J+1)=X(I,J)-T(I,J)*A(I,J)

 END DO

END DO

4.2.10 Avoiding Loop Division

The compiler partially vectorizes loops that contain unvectorizable parts by dividing the loop

before and after those parts. Dividing a loop leaves part of the loop unvectorized, lowers

efficiency at each division point, and lowers the efficiency of the vectorized part. It is better

to remove the cause of nonvectorization, so that the entire loop can be vectorized. If the

unvectorizable parts cannot be removed, reduce the number of divisions either by gathering

the unvectorizable parts into one block or by moving them at the end of the loop. The

efficiency of vectorization is thus improved.

4.2.11 Avoiding Loop Unrolling for Short Loops

Loop unrolling lengthens the body of a loop by a factor of n, in order to reduce the iteration

count to 1/n of its value. This technique is frequently used to gain speed. However, unrolling

a vectorizable DO loop may lower efficiency by reducing the loop length or converting

continuous vectors to noncontinuous vectors. Unrolling vectorizable short DO loops should

be avoided.

Example

ORIGINAL OPTIMIZED

DO I=1,97,3 ! Short Loop Length

 S=S+A(I)*B(I)+A(I+1)*B(I+1) !Unrolling

 & +(I+2)*B(I+2)

END DO

DO I=1,99

 S=S+A(I)*B(I) !No unrolling

END DO

Unrolling an outer loop that is not vectorized is generally effective, especially if it reduces the

number of references to a memory area.

Example

ORIGINAL OPTIMIZED (Outer loop unrolling)

DO J=1,100

 DO I=1,N

 X(I)=X(I)+A(I,K)*B(K,J)

 END DO

END DO

DO J=1,99,2

 DO I=1,N

 X(I)=X(I)+ A(I,K)*(B(K,J)+ B(K,J+1))

 END DO

END DO

In this case, the count of load count and count of store for X(I) and the count of load for

A(I,K) are halved by unrolling.

4.2.12 Increasing Concurrency

Vector addition, subtraction, multiplication, vector shift operations (including multiplying a

real number by 2 or by 1/2), and logical operations can be executed in parallel. Thus, it is

efficient to put as many of these operations together in the same loop as possible.

In general, complex loops result in higher overall performance as compared to relatively

simple loops.

Example

ORIGINAL OPTIMIZED

DO I=1,N

 A(I)=B(I)+C(I)

END DO

DO I=1,N

 X(I)=Y(I)*Z(I)

END DO

DO I=1,N

 A(I)=B(I)+C(I)

 X(I)=Y(I)*Z(I)

END DO

To make instruction reordering by the compiler efficient, as many arithmetic operations as

can be executed in parallel should be performed.

4.2.13 Avoiding Arithmetic Division

Since vector division is slower than other vector arithmetic operations, minimize the number

of divisions by converting them to multiplication or use algorithms that do not contain division.

4.2.14 Using Vectorization Options and Directives

Effective use of vectorization options and vectorization directives can raise the efficiency of

vectorization.

 novector directive: The novector directive should be used in the following cases.

(1) The loop is so short that vectorization would cause a loss rather than a gain in

speed.

(2) Most of the loop is controlled by IF statements and is only rarely executed.

Vectorization of such a loop by the masked vector function would cause a loss

rather than a gain in performance.

(3) When a loop has an out-of-loop branch and is vectorized, only those arithmetic

operations participate in the vectorization that occur before the branch-exit

statement. If the branch-statement occurs at an early iteration, the loop

practically behaves like a short loop and vectorization may result in reduced

performance. novector may be preferred in such cases.

Example

!NEC$ NOVECTOR

DO I=1,1000

 IF(A(I)-B(I)LT.1.0E-10) EXIT

 Z(I)=A(I)-B(I)

END DO

(4) When a program is executed in scalar mode to test the effect of vectorization on

accuracy.

(5) When a program is executed in scalar mode to observe the frequency or locations

of exceptions.

 loop_count directive:

In vectorization, the compiler needs to know the iteration count of a loop for the following

purposes.

(1) To determine the size of an array.

(2) When a loop is created to replace variables defined (or referenced) that extend

across a division point.

(3) When a loop is vectorized by dividing the loop.

(4) To generate efficient vector instructions when the iteration count is less than the

vector register length.

(5) To perform efficient register allocation on the basis of the iteration count.

(6) When the iteration count cannot be determined, the compiler makes one of the

following assumptions.

(7) If the -floop-count option of the compiler directive specifies the iteration count

explicitly, that value is used as the iteration count.

‒ If the -floop-count option specifies the iteration count explicitly, that value is

used as the iteration count. If the value determined by the next method is less

than this value, the value determined by the next method is used.

(8) When the upper limit of the iteration count can be inferred from an array

declaration appearing in a loop, that value is used. A dummy array, whose highest

dimension is declared as 1, is processed as an assumed-size array declarator. If

the compile time option or the vectorization directive NOASSUME is used, array

declarations are not used in iteration-count assumption.

(9) If the iteration count cannot be determined by these methods, 5000 is assumed.

The iteration count assumed by the compiler is shown in the vectorization diagnostic message.

In the following example a loop count of 50 is assumed from the size of the dimension

corresponding to the DO variable, I, in the array declaration. However, if a value less than 50

was specified by the –floop-count option, that value would be used.

Example

REAL A(100,100),B(200,100),C(50,100)

 :

DO I=1,N

 A(I,J)=B(I,J)*C(I,J)

ENDDO

The upper limit of the iteration count cannot be inferred from the array declaration. Therefore,

if the -floop-count=n option is specified, that value is used; if not, 5000 is assumed. See the

following example.

Example

SUBROUTINE SUB (A,B,C,L,M,N)

REAL A (L,M),B(100,*),C(N,1),IX(L)

 :

 :

DO I=1,K

 A(I,J)=B(IX(I),J)*C(J,I)

ENDDO

If the actual iteration count is checked during execution and found to be greater than the

value assumed by the compiler, error is output.

 verror_check and noverror_check directive:

When the noverror_check option is valid, no check is performed for invalid arguments. As a

result, less time is required for calculating the value of the function. The noverror_check

option must be used only when no valid parameter will be passed to the function.

4.2.15 Other Effective Techniques

 Avoiding the use of POINTER attribute

If the POINTER attribute is used, the compiler cannot fully analyze the dependency

between definition and reference and may assume that the dependency cannot be

determined, when in fact vectorization is possible. For this reason, the POINTER attribute

should be avoided.

 NOOVERLAP compiler directive is supplied to declare that variables do not associate with

others.

Example

REAL,DIMENSION(:),POINTER::X

REAL,DIMENSION(100),TARGET::Y

DO I=l,N

X(I)=Y(I)*2.0

ENDDO

Since X may be associated with Y, the compiler assumes data dependency in the loop.

Therefore, the loop is unvectorized. If X is never associated with Y, you can specify the

following compiler directive:

!NEC$ NOOVERLAP(X,Y)

Then the compiler will vectorize the loop.

 Use variables for work space instead of using arrays.

Example 1 Example 2

DO I=1,N

 X=A(I)+B(I)

 Y=C(I)-D(I)

 E(I)=S*X+T*Y

 F(I)=S*Y+T*X

END DO

DO I=1,N

 WX(I)=A(I)+B(I)

 WY(I)=C(I)-D(I)

 E(I)=S*WX(I)+T*WY(I)

 F(I)=S*WY(I)-T*WX(I)

 END DO

In Example 2, WX and WY are loaded and stored in the loop. On the other hand, in Example

1, vector registers are assigned to X and Y and they are not loaded and stored in the loop.

Thus, Example 1 is more efficient than Example 2.

 Additional features

When the basic conditions for vectorization are satisfied, the compiler performs as much

vectorization as possible by transforming the source, especially loops and using special vector

operations of the Vector Engine.

4.2.16 Vectorization by Statement Replacement

Consider replacement of statements if the conditions for vectorization are not satisfied in a

loop structure by variable or array element definitions and references.

Example 1 Example 2 Example 3

DO I=1,N

 A(I)=B(I)*C(I) !definition

 E(I)=D/A(I+1) !reference

END DO

DO I=1,N

 E(I)=D/A(I+1) !definition

 A(I)=B(I)*C(I) !reference

END DO

DO I=1,N

 B(I)=A(I)*C(I) !definition

 A(I+1)=D+E(I) !reference

END DO

DO I=1,N

 A(I+1)=D+E(I) !definition

 B(I)=A(I)*C(I) !reference

END DO

DO I=1,N

 A(I)=B(I)*C(I) !definition

 A(I+1)=X*Y(I) !reference

END DO

DO I=1,N

 A(I+1)=X*Y(I) !definition

 A(I)=B(I)*C(I) !reference

END DO

4.2.17 Vectorization Using Work Vectors

When defining and referencing a variable or array element that does not satisfy vectorization

conditions in a loop structure, if the definition precedes the reference, and the statement

replacement (explained in Section 5.1.2.2) is impossible, vectorization conditions are satisfied

by saving array values in a work vector. See the following example.

Example

DO I=1,N !definition

 A(I)=B(I)*C(I) !reference

 B(I)=T*B(I)

 E(I)=B(I)+A(I+1)

END DO

DO I=1,N

 w(I)=A(I+1) ! work vector w

 A(I)=B(I)*C(I) ! definition

 B(I)=T*B(I) ! Reference

 E(I)=B(I)+w(I)

END DO

4.2.18 Macro Operations

Although patterns like the following do not satisfy the vectorization conditions for definitions

and references, the compiler recognizes them to be special patterns and performs

vectorization by using vector instructions.

 Sum or inner product

The following shows a sum or inner product example.

 S = S ± <exp>

 where <exp> is an expression.

A sum or inner product like the following example that consists of multiple statements is also

vectorized.

 t1 = S ± <exp1>

 t2 = t1 ± <exp2>

 :

 S = tn ± <expn>

 Product

The following shows a product example. This example cannot be vectorized if S is a complex

type.

 S = S* <exp>

A product like the following example that consists of multiple statements can be vectorized.

 t1 = S * <exp1>

 t2 = t1 * <exp2>

 :

 S=tn * <expn>

 Iteration

Iterations shown in the following examples are vectorized unless X is a complex type.

 X(I)=<exp> ± X(I-1)

 X(I)=<exp> * X(I-1)

 X(I)=<exp1> ± X(I-1) * <exp2>

 X(I)=(<exp1> ± X(I-1)) * <exp2>

An iteration like the following example consists of multiple statements can be vectorized.

 t=<exp1> ± X(I-1)

 X(I)=t * <exp2>

 Function type

Example

DO I=1,N

 XMAX=MAX(XMAX,X(I))

END DO

DO I=1,N

 XMIN=MIN(XMIN,X(I))

END DO

 IF type

(1) Finds the maximum or minimum value only.

Example

DO I=1,N

 IF(XMAX.LT.X(I)) THEN

 XMAX=X(I)

 END IF

END DO

(2) Finds the maximum or minimum value and its index.

Example

DO I=1,N

 IF(XMIN.GT.X(I)) THEN

 XMIN=X(I)

 IX=I

 ENDIF

END DO

(3) Finds the index only.

Example

DO I=1,N

 IF(X(IX).LT.X(I)) THEN

 IX=I

 END IF

END DO

(4) Finds the maximum or minimum value, and its index.

Example

DO I=1,N

 IF(XMIN.GT.X(I, J)) THEN

 XMIN=X(I, J)

 IX=I

 IY=J

 END IF

END DO

(5) Compares absolute values.

Example

DO I=1,N

 IF(ABS(XMIN).GT.ABS(X(I))) THEN

 XMIN=X(I)

 END IF

END DO

 Search

(1) A loop that searches for an element that satisfies a given condition is vectorized.

Example

DO I=1,N

 IF(X(I).EQ.0.0) THEN

 EXIT

 END IF

END DO

All of the following conditions must be satisfied.

‒ This is the innermost loop.

‒ There is just one branch out of the loop.

‒ The condition for branching out of the loop depends on repetition of the loop.

‒ There must not be an assignment statement to an array element before the

branch out of the loop.

‒ All basic conditions for vectorization are satisfied except for not branching out

of the loop.

 Compression

A loop for compressing elements that satisfy a given condition is vectorized.

Example

J=0

DO I=1,N

 IF(X(I).GT.0.0) THEN

 J=J+1

 Y(J)=Z(I)

 END IF

END DO

 Expansion

A loop for expanding values to elements that satisfy a given condition is vectorized.

Example

J=0

DO I=1,N

 IF(X(I).GT.0.0) THEN

 J=J+1

 Z(I)=Y(J)

 END IF

END DO

4.2.19 Examples of Vectorization

 Simple array expressions and loops

Example 1

A(1:N)=B(1:N)+X*C(1:N)

Example 2

DO I=1,100

 A(I)=B(I)+X*C(I)

END DO

The array expression and DO loop in the examples are expanded using a vector multiplication

instruction and a vector addition instruction.

 Ti  X * Ci (i=1, 2,…, N)

 Ai  Bi + Ti (i=1, 2,…, N)

 Multidimensional array expression

The first dimension of an array expression of two or more dimensions is vectorized.

Example

A(1:N, 1:M) = B(1:N, 1:M)+X*C(1:N, 1:M)

DO j=1, M

 Tij  X * Cij (i=1, 2,…, N)

 Aij  Bij+ Tij (i=1, 2,…, N)

END DO

 Masked array assignment

A masked array assignment is vectorized using a vector mask generation instruction

that generates a bit vector (mask vector) whose values are 1 or 0 depending on the

truth of a condition expression for each element. A masked vector operation

instruction is also generated that executes an operation only on elements

corresponding to a 1 bit in the mask vector.

Example 1

WHERE(C(1:N).NE.0.0) A(1:N)=B(1:N)/C(1:N)

Mi  1 (if Ci ≠ 0.0)

 0 (if Ci = 0.0) (i=1, 2,…, N)

Ai  Bi / Ci (if Mi = 1) (i=1, 2, …, N)

Mi is a bit vector used in vector operation mask control.

Example 2

WHERE(C(1:N).EQ.0.0)

 A(1:N)=B(1:N)+D(1:N)

ELSEWHERE

 A(1:N)=B(1:N)*C(1:N)+D(1:N)

ENDWHERE

M1i  1 (if Ci ≠ 0.0)

 0 (if Ci = 0.0) (i=1, 2,…, N)

Ai  Bi * Ci (if M1i = 1) (i=1, 2,…, N)

M2i  NOT M1i (i=1, 2,…, N)

Ti  Bi * Ci (if M2i = 1) (i=1, 2,…, N)

Ai  Ti + Di (if M2i = 1) (i=1, 2,…, N)

M1i and M2i are bit vectors used in vector operation mask control.

Mi = 1 (if Ai ≥ 0)

 0 (if Ai < 0)

M A

1 3.0

0 -10.0

1

0.0

1 4.0

: :

0 -7.0

0 -4.0

Figure 4 Vector Mask Generation Instruction

Figure 5 Masked Vector Operation Instruction

 Loops containing IF constructs

The method of vectorizing a loop that contains an IF construct varies depending on

the form of the condition expression in the IF statement. If the value of the condition

expression is invariant within the loop, the IF statement is expanded without change.

Example 1

DO I=1, 100

 A(I)=B(I)*C(I)

 IF(ISW.EQ.1) THEN

 C(I)=D(I)+E(I)

 ENDIF

END DO

Ai  Bi * Ci (i=1, 2,…, N)

if ISW.EQ.1 then

 Ci  Di + Ei (i=1, 2,…, N)

end if

When the value of the condition expression depends on the loop iteration, vectorization

uses a vector mask generation instruction and a masked vector operation instruction.

See masked assignment previously shown.

Example 2

DO I=1,N

 IF(C(I).NE.0.0) THEN

 A(I)=B(I)/C(I)

 END IF

END DO

Mi  1 (if Ci ≠ 0.0)

 0 (if Ci = 0.0) (i=1, 2,…, N)

Ai  Bi / Ci (if Mi = 1) (i=1, 2,…, N)

Mi is a bit vector used in vector operation mask control.

Vectorization is also possible when the IF construct is nested.

Example 3

DO I=1,N

 IF(X(I).NE.0.0) THEN

 IF(Y(I).GE.0.0) THEN

 Z(I)=Y(I)/X(I)

 ELSE

 Z(I)=0.0

 ENDIF

 ENDIF

END DO

M1i  1 (if Xi ≠ 0.0)

 0 (if Xi = 0.0) (i=1, 2,…, N)

M2i  1 (if Yi ≥ 0.0 and M1i = 1)

 0 (if Yi < 0.0 or M1i = 0) (i=1, 2,…, N)

M3i  M2i, AND M1i (i=1, 2,…, N)

Zi  Yi / Xi (if M2i = 1) (i=1, 2,…, N)

Zi  0.0(if M3i = 1) (i=1, 2,…, N)

M1i, M2i, and M3i are bit vectors used in vector operation

mask control

Array expressions and loops containing intrinsic function references

When there is a reference to an intrinsic function that is subject to vectorization in an

array expression or loop, it is expanded into a series of instructions that reference a

vector version intrinsic function that takes vector data as arguments and returns

function values using vector data.

Example 1

A(1:N)=SQRT(X(1:N)*X(1:N)+Y(1:N))

Example 2

DO I=1, N

 A(I)=SQRT(X(I)*X(I)+Y(I)*Y(I))

ENDDO

Either of the two previous examples can be expanded into the following series of

instructions.

Ti  Xi * Xi +Yi * Yi (i=1, 2,…, N)

Ai  VSQRT (Ti) (i=1, 2,…, N)

VSQRT is the vector version SQRT function.

If the intrinsic function reference is within an IF condition, a series of instructions (that

compress the vector data of the arguments using a vector compression instruction)

call the vector function using the compressed vector data as arguments, and expand

the vector data of the function value to vector data of the original size using a vector

expansion instruction.

Figure 6 Vector Compression and Expansion

Some intrinsic functions are expanded into a series of vector instructions that compute

direct function values.

Example 1

IX(1:N)= IAND (IY(1:N),IZ(I:N))

Example 2

DO I=1,N

 IX(I)= IAND (IY(I), IZ(I))

END DO

Either of the previous two examples can be expanded into the following sequence of

instructions.

Example 3

IXi  IYi & IZi (i=1, 2,…, N)

 Loops containing index variables

If an index variable is used anywhere within a loop except in an array subscript

expression, it is vectorized by generating vector data for a number sequence.

Example

DO I=1,N

 X(I)=I

ENDDO

Ti  Ii (i=1, 2,…, N)

Xi  float(Ti) (i=1, 2,…, N)

Ii is vector data in which the value of element i is i.

 Vector subscripts

A reference in an array expression to a whole array or an array section (in which

section subscripts are subscript triplets) or a reference inside a loop to an array

element with linear subscripts is treated as a sequence vector or a constant stride

vector.

A reference to an array section in an array expression (in which the section subscripts

are vector subscripts) or a reference to an array element in a loop with subscripts that

are nonlinear subscripts is treated as an indirect index vector. It is expanded into a

series of vector instructions in which vector gather and scatter instructions are used.

Figure 7 Vector Gather and Scatter Instructions

The following are examples of vector and nonlinear subscripts.

Example 1: vector subscripts

X(IX(1:N))=Y(IX(1:N)) * Z(1:N)

T1i  Y(IXi) (i=1, 2,…, N)

T2i  T1i * Zi (i=1, 2,…, N)

X(IXi)  T2i (i=1, 2,…, N)

Example 2: nonlinear subscripts

DO I=I, N

 X(I * I)=Y(I * I) + Z(I)

END DO

T1i  Ii (i=1, 2,…, N)

ITi  T1i * T1i (i=1, 2,…, N)

T2i  YITi (i=1, 2,…, N)

T3i  T2i * Zi (i=1, 2,…, N)

XITi  T3i (i=1, 2,…, N)

Ii is vector data in which the value of element i is i.

4.2.20 Partial Vectorization

4.2.21 Code-Related Optimization

Code-related optimizations are designed to eliminate operations that are not needed as much

as possible by analyzing the flow of control and the flow of data in a program. They shorten

the execution time of a program by keeping the operations in a loop to the minimum

necessary and replacing an operation with an equivalent faster operation whenever possible.

Optimizations related to vectorized code are shown as follows.

 Making multiplication and division special operations

The operation processor provides instructions that execute doubling and halving for

vector data, and using these effectively makes fast execution possible.

Example

ORIGINAL VECTORIZATION HALF INSTRUCTION

DO I=1,N

 X (I) = A (I) * 0.5*B

(I) * C (I)

END DO

 T1i  Ai * 0.5

 T2i  Bi * Ci

 Xi  T1i * T2i

 T1i  Half (Ai)

 T2i  Bi * Ci

 Xi  T1i * T2i

In this example, in order to use the multiplication/logic pipeline with each operation,

Xi  T1i*T2i cannot be executed until T1i Ai*0.5 or T2i Bi*Ci ends (the

addition/shift and multiplication/logic pipelines each are two at a time). However,

by replacing T1i  Ai*0.5 with T1i  Half(Ai), it is possible to begin at the same

time through Xi T1i *T2i.

This is because the operation pipeline used in the half instruction and the

multiplication pipeline are executed in parallel.

 Deleting common expressions

If a given computation has already been performed in the same program, that

computation is removed and replaced by a reference to the result of the previous

computation in order to avoid an unnecessary computation. This is called common

expression deletion.

Common expression deletion is also performed on vector operations.

Example

ORIGINAL VECTORIZATION HALF INSTRUCTION

DO I=1,N

 X(I)=A(I) * (B + SIN (C(I)))

 Y(I)=D(I) + (SIN (C(I)) + B)

END DO

T1i  B+SIN (Ci)

Xi  Ai * T1i

T2i  SIN (Ci) + B

Yi  Di + T2i

T1i  B+SIN(Ci)

Xi  Ai * T1i

Yi  Di + T1i

Common expression deletion decreases the computation volume and number of

references to intrinsic functions and shortens execution time.

 Extracting scalar operations

Although the operation processor can operate at high speed using operations between

scalar data and vector data and vector instructions, operating on scalar data is more

efficient than operating on scalar data and vector data. When an expression is

evaluated using the normal evaluation sequence, a vector operation is sometimes

required where a scalar operation could be used. The compiler is designed to shorten

execution time by extracting such scalar operations and causing them to operate at

the same time.

Example:

ORIGINAL SCALAR OPERATION

EXTRACTION

VECTORIZATION

DO I=1, N

 X(I) = A * Y (I) * B

END DO

Normal vectorization

 TiA*Yi (vector operation)

 XiTi*B (vector operation)

DO I=1, N

 X(I) = A * B * Y (I)

END DO

T = A * B (scalar operation)

Xi  T *Yi (vector operation)

In this example, when normal vectorization is performed, vector multiplication of scalar

data A and vector data Y and vector multiplication of the resulting vector data T and

scalar data B are executed. However, when scalar operation extraction is performed,

first scalar multiplication of scalar data A and B is executed and then vector

multiplication of the resulting scalar data T and vector data Y is executed. Because of

this, the number of vector operations is one less and the execution time is shortened.

This optimization is not performed when the compile time option -floop-nointerchange

is specified.

 Making division multiplication

Since vector multiplication instructions are faster than vector division instructions,

making division multiplication shortens execution time.

Example 1

ORIGINAL VECTORIZATION

DO I=1, N

 A(I)=B(I)/X

ENDDO

T  1.0/X

Ai  Bi * T

Example 2

ORIGINAL VECTORIZATION

DO I=1, N

 X(I)=A(I)/B(I)/C(I)

ENDDO

Ti  Bi * Ci

Xi  Ai / Ti

This optimization is not performed when the compile time option -novwork is specified.

 Optimizing mask operations

Using masked operations makes vectorization possible for a DO loop containing an IF

statement. However, if IF statements are nested to make a complex condition, identical

operations may arise between masks, lowering execution efficiency. In order to avoid

this, optimization is performed as follows for mask operations.

(1) Process identical operations as common expressions

In this example, A(I).GT.0.0 is processed as a common expression.

Example

ORIGINAL VECTORIZATION

DO I=1, N

 IF (A(I).LE.0.0) THEN

 X(I)=A(I) * B(I)

 END IF

 Y(I)=A(I) +B(I)

 IF (A(I).GT.0.0 AND. B(I). EQ.0.0) THEN

 Z(I)=A(I)

 END IF

END DO

M1i  0: if Ai > 0.0

 1: if Ai ≤ 0.0

Xi  Ai * Bi (if M1i = 1)

Yi  Ai + Bi

M2i  0: if Bi ≠ 0.0

 1: if Bi = 0.0

M3i  M1i AND M2i

Zi  Ai (if M3i =1)

(2) Common expression processing for nested IF statements

In this example, Y(I).GT.0.0 is processed as a common expression.

Example

ORIGINAL VECTORIZATION

DO I=1, N

 IF (X(I). GT. 0.0) THEN

 IF (Y(I). GT. 0.0) THEN

 Z (I) = Y(I)/X (I)

 ELSE

 Z (I) = 0.0

 END IF

 ELSE

M1i  0: if Xi > 0.0

 1: if Xi ≤ 0.0

M2i  0: if Yi > 0.0

 1: if Yi ≤ 0.0

M3i  M1i AND M2i

Zi  Yi / Xi (if M3i = 1)

 IF (Y(I). GT. 0.0) THEN

 Z (I) = X(I)/Y(I)

 END IF

 END IF

END DO

M4i  M1i AND M2i

Zi  0. 0 (if M4i = 1)

M5i  M1i AND M2i

Zi  Xi / Yi (if M5i = 1)

(3) Eliminating unneeded last value saves

When vectorizing the following DO loop, in order to process the variable X by

considering it as an array, the value of X for I=N (last value) must be moved from the

area that made an array to the area of X. However, if X is not referenced after execution

of the DO loop, the last value of X need not be saved. In such cases, the instruction to

save the last value is deleted to shorten execution time.

Example

DO I=1, N

 X=A(I)

 B (I) = C (I) * X

END DO

(4) Code clean-up

Deletion of simple assignments and deletion of unneeded code are also performed for

vectorized code.

4.2.22 Loop Transformations

Based on program structures, the most time consuming parts of a program are loops. Most

high performance application work iteratively, giving rise to the need of optimization of the

loop performance. Depending on the target architecture, the goal of loops transformations

are:

 improve data reuse and data locality

 efficient use of memory hierarchy

 reducing overheads associated with executing loops

 instructions pipeline

 maximize parallelism

Understanding of the underlying system becomes necessary in order to identify the attributes

for optimization. However, some general optimization techniques are presented below. Loop

transformations can be performed at different levels by the programmer, the compiler, or

specialized tools. At high level, some well-known transformations are commonly considered.

The compiler performs various loop transformations in order to improve performance of the

vector code.

 Loop Collapse

A loop collapse is effective in not only reducing the execution time for controlling

iteration of the outer loop but also in increasing the loop iteration count and

improving the efficiency of vector instructions.

ORIGINAL COLLAPSED

DO N = 1, NMAX

 DO K = 1, KMAX

 ARR(N,K) = 0.D0

 END DO

END DO

DO N = 1, NMAX*KMAX

 ARR(N,0) = 0.D0

END DO

ORIGINAL COLLAPSED

Example 1 (in C)

int a[100][300];

for (i = 0; i < 300; i++)

 for (j = 0; j < 100; j++)

 a[j][i] = 0;

int a[100][300];

int *p = &a[0][0];

for (i = 0; i < 30000; i++)

 *p++ = 0;

Example 2 (in C)

float a[100][100][100], b[100][100][100];

for (i = 1; i < n-2; i++) {

 for (j = 0; j < 100; j++) {

 for (k = 0; k < 100; k++) {

 a[i][j][k] = b[i][j][k];

 }

 }

}

float a[100][100][100], b[100][100][100];

for (i =0;i <n*10000-30000;i++) {

 a[1][0][i] = b[1][0][i];

}

ORIGINAL COLLAPSED

Example 1 (in FORTRAN)

REAL,DIMENSION(10,30)::A,B,C

DO J=1,30

 DO I=1,10

 A(I,J)=B(I,J)+C(I,J)

 END DO

END DO

REAL,DIMENSION(10,30)::A,B,C

DO IJ=1,30*10

 A(IJ,1) = B(IJ,1) + C(IJ,1)

ENDDO

Example 2 (in FORTRAN)

REAL,DIMENSION(10,30)::A,B,C

do l = 2, lmax

 do k = 1, lmax - 1

 do i = 1, imax

 ARR(i, k, l) = max(ARR(i, k, l), 0.d0)

 ARR(i, k, l) = min(ARR(i, k, l), 1.d0)

 end do

 end do

end do

do l = 2, lmax

 do k = 1, lmax*imax - imax

 temp = ARR(k,1,l)

 temp = max(temp, 0.d0)

 ARR(k,1,l) = min(temp, 1.d0)

 enddo

end do

The compiler automatically collapses a loop if:

 The loops are too tightly nested, i.e. each DO loop and the DO loop nested

immediately within it must look as shown in Example 1.

Example 1:

loop nest is tightly nested

Example 2:

loop nest is not tightly nested

Example 3:

loop nest is not tightly nested

DO K=1,10

 DO J=1,20

 DO I=1,30

 A(I,J,K)=B(I,J,K)*C(I,J,K)

 ENDDO

 ENDDO

ENDDO

DO K=1,10

 D(K)=0.0

 DO J=1,20

 DO I=1,30

 A(I,J,K)=B(I,J,K)*C(I,J,K)

 ENDDO

 X(K,J)=Y(K,J)+Z(K,J)

 ENDDO

ENDDO

DO K=1,10

 DO J=1,20

 DO I=1,10

 S(I,J,K)=T(I,J,K)*U(I,J,K)

 ENDDO

 DO I=1,30

 A(I,J,K)=B(I,J,K)*C(I,J,K)

 ENDDO

 ENDDO

ENDDO

 The loop bounds must be identical to the array bounds for the first N-1 dimensions,

where N is the number of dimensions to be collapsed. When the iteration count of a loop

depends on the iteration count of its outer loop, the loop is not collapsed.

Example:

This loop nest is not collapsed.

DO K=1,20

 DO J=K,100

 DO I=1,100

 A(I,J,K)=B(I,J)

 ENDDO

 ENDDO

ENDDO

 In the subscription of the array reference, each index of loops is appeared with the

same form and the same order.

Example: Data dependencies are unchanged after the loop collapsed.

ORIGINAL LOOP COLLAPSED

REAL,DIMENSION(10,30)::A,B,C

DO J=1,30

 DO I=1,10

 A(I,J)=B(I,J)+C(I,J)

 ENDDO

ENDDO

REAL,DIMENSION(10,30)::A,B,C

REAL,DIMENSION(300)::aa,bb,cc

EQUIVALENCE (A,aa),(B,bb),(C,cc)

DO ii=1,300

 aa(ii)=bb(ii)+cc(ii)

ENDDO

 All arrays that are indexed by the loops are neither a pointer nor an assumed shape

array.

When a pointer or an assumed shape array is indexed by the loop, the compiler does

not automatically collapse the loops, and can neither automatically collapse the loops

containing an automatic array nor an allocatable array. If you specify the compiler

directive COLLAPSE, then the compiler collapses the loops even if such arrays exist in

the loops.

 Loop Interchange

Loop interchange is performed in order to remove data dependency or improve performance

of vector instructions.

Loop Interchange is the process of interchanging the loop indexes of inner and outer loops in

the case of nested loops. This is mostly used to improve cache behavior. In practice, the

innermost loop should (only) index the right-most array index expression in case of row-

major storage like in C.

Loop interchange can also expose parallelism. If an inner-loop does not carry a dependency

(entry in direction vector equals ‘=‘), this loop can be executed in parallel. The granularity of

the parallel loop can be increased by moving the inner loop outward.

ORIGINAL INTERCHANGED

Example 1 (in C)

for (i=0; i<N; i++)

 for (j=0; j<M; j++) ! Unvectorized Loop

 B[i][j] = f(A[j],B[i][j-1]);

for (j=0; j<M; j++)

 for (i=0; i<N; i++) ! Vectorized Loop

 B[i][j] = f(A[j],B[i][j-1]);

Example 2 (in C)

for (i=0; i <n; i++) {

 for (j=0; j <n; j++) {

 a[j][i+1] = 2.0*a[j][i-1];

 }

for (j=0; j<n; j++){

 for (i=0; i<n; i++){

 a[j][i+1] = 2.0*a[j][i-1];

 }

} }

ORIGINAL INTERCHANGED

Example 1 (in FORTRAN)

DO J=1,M

 DO I=1,N

 A(I+1,J) = A(I,J) + B(I,J)

 ENDDO

ENDDO

DO I=1,N

 DO J=1,M

 A(I+1,J) = A(I,J) + B(I,J)

 ENDDO

ENDDO

Example 2 (in FORTRAN)

DO I=1,N

 DO J=1,M

 A(I,J)=B(I,J)+C(I,J)

 ENDDO

ENDDO

DO J=1,M

 DO I=1,N

 A(I,J)=B(I,J)+ C(I,J)

 ENDDO

ENDDO

The compiler automatically exchanges the outer loop with the inner if:

The loops are tightly nested.

Interchanging loops would enable the loop to be vectorized, increase the loop length, or

shorten the stride of array references.

Data dependencies are unchanged after the loop interchange.

Example: Data dependency is removed

ORIGINAL LOOP INTERCHANGED

DO J=l,100

 DO I=1,50

 A(I+l,J)=A(I,J)*B(I,J)

 ENDDO

ENDDO

DO I=1,50

 DO J=1,100

 A(I+l,J)=A(I,J)*B(I,J)

 ENDDO

ENDDO

Example: Longer loop length and shorter stride of array references.

ORIGINAL LOOP INTERCHANGED

DO I=1,100

 DO J=1,10

 A(I,J)=A(I,J)*B(I,J)

 ENDDO

ENDDO

DO J=1,10

 DO I=1,100

 A(I,J)=A(I,J)*B(I,J)

 ENDDO

ENDDO

 Alternate code generation

When there is a choice on vectorized loop, the compiler generates two versions of the loop

together with a run-time test to choose between them.

Vectorization threshold length run-time testing

When the compiler cannot determine a loop length, it generates two versions of the loop

together with a run-time test. If the loop length is greater than or equal to the vectorization

threshold length, the vector version executes. Otherwise, the scalar version executes.

Vectorization threshold length can be specified by compiler option -mvector-threshold.

Example: Longer loop length and shorter stride of array references.

ORIGINAL LOOP TRANSFORMED

DO I=1,N

 A(I)=B(I)+C(I)

ENDDO

IF(N.LT.5) THEN

 DO I=1,N

 A(I)=B(I)+C(I) !Scalar

 ENDDO

ELSE

 A(1:N)=B(1:N)+C(1:N) !Vector

ENDIF

Data dependency run-time testing

When the data dependency is unclear because of variables in array subscripts, the compiler

generates two versions of the loop together with run-time test. If the array has no data

dependency, the vector version will execute; otherwise, the scalar version or the partial

vectorized version, i.e., a part of the loop body which references the array is not vectorized,

will execute.

 Example:

Example: If K> 0 or K<-10, A(I) does not conflict with A(I+K).

ORIGINAL LOOP TRANSFORMED

DO I=N,N+10

 A(I)=A(I+K)+B(I)

ENDDO

IF(K.GE.0 OR. K.LE.-11) THEN

 A(N:N+10)=A(N+K:N+10+K)+B(N:N+10) !

Vector

ELSE

 DO I=N,N+10

 A(I)=A(I+K)+B(I) ! Scalar

 ENDDO

ENDIF

Short reduction loop run-time testing

When a loop length is less than or equal to the maximum vector register length (short loop),

the compiler is able to generate a more simple and efficient vector code for a reduction macro

operation such as sum, inner product, product or maximum/minimum value.

If the iteration count of the loop including those macro operations is unknown, the compiler

generates two versions of the loop together with a run-time test. If the loop length is less

than or equal to the maximum vector length, the vector code optimized for a short loop

executes; otherwise, the normal vector code executes.

Example

ORIGINAL LOOP TRANSFORMED

DO I=1,N

 S = S + X(I)

ENDDO

! Is N less or equal to maximum vector length?

IF(N.LE.MaxVL) THEN

!CDIR SHORTLOOP

 DO I=1,N

 ! Optimized vector code for short loop

 S = S + X(I)

 ENDDO

ELSE

 DO I=1,N

 S = S + X(I) ! Normal vector code

 ENDDO

ENDIF

When a loop or an array expression is vectorized with the extended vectorization function,

an alternate code generation function does not apply the loop or the array expression even if

the -mvector-dependency-test option or directive is specified.

 Unrolling outer loops

The compiler automatically unrolls outer loops, if outer loop unrolling improves the

opportunities for overlapping vector instructions or reduces the number of loads and stores

in the inner loops. Loop Unrolling (also referred to as Loop Unwinding) is a method of

optimizing time-critical/ performance-critical loops. It is achieved by reducing its overhead

through reduction of the number of iterations in that loop. This iteration reduction is

performed by replicating the functionality within the same loop.

ORIGINAL UNROLLED

for (i = 0; i < 100; i++)

{

 func();

}

for (i = 0; i < 100; i += 2)

{

 func();

 func();

}

Loop unrolling is effective when you can break any dependency chains within the loop.

ORIGINAL UNROLLED

for (int i=0; i<n; i++)

{

 sum += data[i];

}

for (int i=0; i<n; i+=4)

{

 sum1 += data[i+0];

 sum2 += data[i+1];

 sum3 += data[i+2];

 sum4 += data[i+3];

}

sum = sum1 + sum2 + sum3 + sum4;

In principle, the target is to improve the speed of the program by elimination/reduction of

instructions that control the loop. Through loop-unrolling, below benefits can be achieved:

Reduction in branching

Hiding read/write latencies

Some illustrated examples:

ORIGINAL UNROLLED

Example 1 (in C)

for (i=0; i<50; i++)

{

 a[i] = b[i];

}

for (i =0; i<50; i+=2)

{

 a[i] = b[i];

 a[i+1] = b[i+1];

}

Example 2 (in C)

int countbit(unsigned int n)

{

 int bits = 0;

 while (n != 0)

 {

 if (n & 1) bits++;

 n >>= 1;

 }

 return bits;

}

int countbit(unsigned int n)

{

 int bits = 0;

 while (n != 0)

 {

 if (n & 1) bits++;

 if (n & 2) bits++;

 if (n & 4) bits++;

 if (n & 8) bits++;

 n >>= 4;

 }

 return bits;

}

ORIGINAL UNROLLED

Example 1 (in FORTRAN)

DO I=1, N

 A(I)=B(I)

END DO

DO I=1, N-1, 2

 A(I)=B(I)

 A(I+1)=B(I+1)

END DO

Example 2 (in FORTRAN)

DO I = 1, IMAX

 DO J = 1, JMAX

 S(J)=S(J)+A(I,J)*B(I,J)

 END DO

END DO

if (IMAX .gt. 0)then

 TEMP = and(IMAX,3)

 DO I = 1, TEMP

 DO J = 1, JMAX

 S(J)=S(J)+A(I,J)*B(I,J)

 END DO

 END DO

 DO I = TEMP+1, IMAX, 4

 DO J = 1, JMAX

 S(J)=S(J)+A(I,J)*B(I,J) &

 & +A(I+1,J)*B(I+1,J) &

 & +A(I+2,J)*B(I+2,J) &

 & +A(I+3,J)*B(I+3,J)

 END DO

 END DO

endif

Example: The number of loads and stores of S(J) are reduced.

ORIGINAL LOOP UNROLLED

DO I=1,10

 DO J=l,N

 S(J)=S(J)+A(I,J)*B(I,J)

 ENDDO

ENDDO

DO I=1,10,2

 DO J=l,N

 S(J)=S(J)+A(I,J)*

 & B(I,J)+A(I+l,J)*B(I+l,J)

 ENDDO

ENDDO

 Loop rerolling

Unrolling a vectorizable loop may lower efficiency because it reduces loop length or

converting continuous vectors to non-continuous vectors.

The compiler recognizes unrolled loops and rerolls them.

Example:

ORIGINAL LOOP REROLLED

DO I=1,100,2

 A(I)=B(I)+C(I)

 A(I+l)=B(I+l)+C(I+l)

ENDDO

DO I=l, 100

 A(I)=B(I)+C(I)

ENDDO

 Outer loop strip-mining

When an iteration count of a loop is greater than the maximum vector register length,

the compiler puts a loop around the vector loop which splits the total vector operation

into "strips" so that the vector length will not be exceeded.

This is the method of converting a single loop into two nested loops for a specified

“block” size.

Strip-mining, also known as loop sectioning, is a loop transformation technique for

enabling SIMD-encodings of loops, as well as providing a means of improving memory

performance. By fragmenting a large loop into smaller segments or strips, this

technique transforms the loop structure in two ways:

ORIGINAL STRIP-MINED

Example 1 (in C)

i = 1

do while (i<=n)

 a(i) = b(i) + c(i)

 i = i + 1

end do

// when n is a multiple of 4

i = 1

do while (i < (n - mod(n,4)))

 a(i:i+3) = b(i:i+3) + c(i:i+3)

 i = i + 4

end do

Example 2 (in C)

do i=1,N

 A[i] = x + B[i] * 2

enddo

do ii=1,N,B

 do i=ii, min(ii+B-1, N), 1

 A[i] = x + B[i] * 2

 enddo

enddo

Example:

ORIGINAL LOOP STRIP-MINED

DO I=1,1000

 A(I)=B(I)+C(I)

ENDDO

DO i=1,1000,maxvl

 l=MIN(1000-i,maxvl-1)

 A(i:i+l)=B(i:i+l)+C(i:i+l)

ENDDO

maxvl: maximum vector register length

For a loop nest that has invariable array references on the outer loop inside the inner

loop, the inner loop is split into a strip loop and the strip loop is moved outside of the

outer loop so that invariants can be kept in the vector register.

Example:

ORIGINAL OUTER LOOP STRIP-MINED Load and store of S(j:j+l)

are moved to outside.

DO I=1,10

 DO J=1,1000

S(J)=S(J)+X(J,I)*Y(J,I

)

 ENDDO

ENDDO

DO j=1,1000,maxvl

 l=MIN(1000-j,maxvl-1)

 DO I=1,10

S(j:j+l)=S(j:j+l)+X(j:j+l,I)*

Y(j:j+l,I)

 ENDDO

ENDDO

DO j=1,1000,maxvl

 l=MIN(1000-j,maxvl-1)

 vr(1:l)=S(j:j+l)

 DO I=1,10

vr(1:l)=vr(1:l)+X(j:j+l,I)*Y(

j:j+l,I)

 ENDDO

 S(j:j+l)=vr(1:l)

ENDDO

maxvl: maximum vector register length

vr: vector register

 Recognizing matrix multiply loop

The compiler recognizes matrix-matrix or matrix-vector multiplication loops, and replaces

them to a turned internal library call.

Matrix-Vector Multiplication

Example:

do j = 0,N2-1

 do i = 0,N1-1

 C(i*NC+1) = C(i*NC+1) + B(j*NB+1) * A(i+1,j+1)

 enddo

enddo

NB and NC should be integer constants.

Example:

do j = 0,N2-1

 do i = 0,N1-1

 C(i*NC+1) = C(i*NC+1) - B(j*NB+1) * A(i+1,j+1)

 enddo

enddo

NB and NC should be integer constants.

Matrix-Matrix Multiplication

Example 1:

do k = 1, N3

 do j = 1, N2

 do i = 1, N1

 C(i, j) = C(i, j) + B(k, j) * A(i, k)

 enddo

 enddo

 enddo

Example 2:

do k = 1, N3

 do j = 1, N2

 do i = 1, N1

 C(i, j) = C(i, j) - B(k, j) * A(i, k)

 enddo

 enddo

enddo

Example 3:

do j = 1, N2

 do i = 1, N1

 C(i, j)=0

 enddo

 enddo

 do k = 1, N3

 do j = 1, N2

 do i = 1, N1

 C(i,j) = C(i,j) + B(k,j) * A(i,k)

 enddo

 enddo

 enddo

do i = 1, N1

 do j = 1, N2

 C(i, j)=0

 do k = 1, N3

 C(i,j) = C(i,j) + B(k,j) * A(i,k)

 enddo

 enddo

enddo

Example 4:

do j = 1, N2

 do i = 1, N1

 C(i, j)=0

 enddo

enddo

do k = 1, N3

 do j = 1, N2

 do i = 1, N1

 C(i,j) = C(i,j) - B(k,j) * A(i,k)

 enddo

 enddo

enddo

do i = 1, N1

 do j = 1, N2

 C(i, j)=0

 do k = 1, N3

 C(i,j) = C(i,j) - B(k,j) * A(i,k)

 enddo

 enddo

enddo

 Loop expansion

The compiler expands a loop if all of the following conditions exist.

The loop is an innermost loop.

The loop does not contain IF statement.

The detailed option -floop-unroll is effective.

The loop length of the loop can be determined at compile time.

Example

ORIGINAL LOOP EXPANDED

DO J=1,3

 X(I)=Y(I)

END DO

X(1)=Y(1)

X(2)=Y(2)

X(3)=Y(3)

Loop expanding is done before vectorization, therefore when all the loops in an outer loop is

expanded, the outer loop is vectorized as an innermost loop.

Example

ORIGINAL LOOP EXPANDED

DO I=1,N

 DO J=1,3

 X(I,J) = X(I,4)

 END DO

END DO

DO I=1,N

 X(I,1)=X(I,4)

 X(I,2)=X(I,4)

 X(I,3)=X(I,4)

ENDDO

Loops that have a small iteration count and contain only a few lines of code may be expanded

into the equivalent statements, so that the loop no longer exists. This may enable other

optimizations.

Loop and array assignment expanding take precedence over loop collapsing and the

COLLAPSE directive and the user should specify the detailed option -noexpand to make

collapsing occur in these cases.

 Loop fusion

As the name suggests, it is the mechanism of fusing two adjacent loops of similar

lengths/functionality into one loop. This is a very effective method of reducing the loop

overhead and improving run-time performance of the program.

Although loop fusion reduces loop overhead, it does not always improve run-time

performance, and may in some cases, reduce run-time performance. For example, the

memory architecture may provide better performance if two arrays are initialized in separate

loops, rather than initializing both arrays simultaneously in one loop.

ORIGINAL FUSED

Example 1 (in C)

/* L1: short parallel loop */

for (i=0; i < 100; i++)

{

 a[i] = a[i] + b[i];

}

/* L2: another short parallel loop */

for (i=0; i < 100; i++)

{

 b[i] = a[i] * d[i];

}

/* L3: a larger parallel loop */

for (i=0; i < 100; i++)

{

 a[i] = a[i] + b[i];

b[i] = a[i] * d[i];

}

ORIGINAL FUSED

Example 1 (in FORTRAN)

psx(:)=0.0D0

do i=1,imax

 psx(i)=ps(i)*lnpsx(i)

end do

psy(:)=0.0D0

do i=1,imax

 psy(i)=ps(i)*lnpsy(i)

end do

psx(:)=0.0D0

psy(:)=0.0D0

do i=1,imax

 psx(i)=ps(i)*lnpsx(i)

 psy(i)=ps(i)*lnpsy(i)

end do

Example2 (in FORTRAN)

do i=1, imax

 do k=1, NUM

 if (cvr(i,k) > 1.D-30) then

 cbase(i) = p(i,k)

 exit

 end if

 end do

 do k=NUM, 1, -1

 if (cvr(i,k) > 1.D-30) then

 ctop(i) = p(i,k)

 exit

 end if

 end do

end do

do i=1, imax

 FBase=0

 FTop=0

 do k=1, NUM

 if ((cvr(i,k) > 1.D-30) .and. FBase.eq.0) then

 FBase = k

 end if

 if ((cvr(i,((NUM + 1) - k)) > 1.D-30) .and.

FTop.eq.0) then

 FTop = k

 end if

 end do

 if (FBase.ne.0) then

 cbase(i) = p(i,FBase)

 end if

 if (FTop.ne.0) then

 ctop(i) = p(i,((NUM + 1) - FTop))

 end if

end do

Example 3 (in FORTRAN)

l = kmax - 1

DO i = 1, imax

 WORK(i, l) =DX(i, l) * DY(i, l)

 WSUM(i, l) = WORK(i, l)

 ARR(i, l, l) = 1.0d0

 ARR(i, l+1, l) = ARR(i,l,l) - WORK(i,l)

 ARR(i, l, l + 1) = ARR(i, l + 1, l)

 ARR(i,l+2,l)= ARR(i,l+1,l) - WORK(i,l+ 1)

 ARR(i, l, l + 2) = ARR(i, l + 2, l)

END DO

l = kmax - 1

DO i = 1, imax

 WORK(i, l) = DX(i, l) * DY(i, l)

 WSUM(i, l) = WORK(i, l)

 ARR(i, l, l) = 1.0d0

 ARR(i, l+1,l) = ARR(i, l, l) - WORK(i, l)

 ARR(i, l, l + 1) = ARR(i, l + 1, l)

 ARR(i,l+2,l)= ARR(i,l+1,l) - WORK(i,l+1)

 ARR(i, l, l + 2) = ARR(i, l + 2, l)

 !REPLACED ALL ‘l’ WITH ‘l+1’

l = kmax

do i = 1, imax

 WORK(i, l) = DX(i, l) * DY(i, l)

 WSUM(i, l) = WORK(i, l)

 ARR(i, l, l) = 1.0d0

 ARR(i, l+1,l) = ARR(i, l, l) - WORK(i, l)

 ARR(i, l, l + 1) = ARR(i, l + 1, l)

end do

 WORK(i, l+1) = DX(i, l+1) * DY(i, l+1)

 WSUM(i, l+1) = WORK(i, l+1)

 ARR(i, l+1, l+1) = 1.0d0

 ARR(i,l+2,l+1)=ctau(i,l+1,l+1)-WORK(i, l+1)

 ARR(i,l+1,l+2) = ARR(i,l+2, l+1)

end do

4.2.23 Effects on Arithmetic Results

Execution results may differ before and after vectorization for the following reasons.

The order of operation may differ before and after vectorization.

Example: The operation order of a summation operation containing eight

elements.

BEFORE VECTORIZATION AFTER VECTORIZATION

s=s+a1

s=s+a2

:

:

s=s+a8

t1=a1+a5

t2=a2+a6

t3=a3+a7

t4=a4+a8

t5=t1+t3

t6=t2+t4

t7=t5+t6

s=s+t7

To increase speed, the vector versions of intrinsic functions do not always use the same

algorithms as the scalar versions.

Optimization techniques, such as conversion of division to multiplication, are applied

differently.

Optimization techniques, such as reordering of arithmetic operations, are applied differently.

Integer iteration macro operation is vectorized by using a floating-point instruction. So when

the result exceeds 52 bits or when a floating overflow occurs, the result differs from that of

scalar execution.

4.2.24 Detection of Vectorization-Caused Errors and Exceptions

Detection of errors and arithmetic exceptions by intrinsic functions may differ before and after

vectorization. A difference in the order of detection is shown as follows:

DO I=1,100

 X(I)=SQRT(A(I))

 Y(I)=ALOG(B(I))

END DO

On the assumption that A(2) and A(5) are negative and other elements of A are positive, and

B(3) and B(4) are zero and other elements of B are positive, the order of error detection

before vectorization is as follows:

 Error for A(2)<0 in SQRT

 Error for B(3)=0 in ALOG

 Error for B(4)=0 in ALOG

 Error for A(5)<0 in SQRT

The order of error detection after vectorization is as follows:

 Error for A(2)<0 in SQRT

 Error for A(5)<0 in SQRT

 Error for B(3)=0 in ALOG

 Error for B(4)=0 in ALOG

When a loop containing intrinsic functions is vectorized, and the vector version is referenced,

no error check is made on the values of arguments. The NOVERRCHK compiler directive is

enabled.

4.2.25 Boundary of Dummy Array

Data which is an operand of the vector operation must be aligned on a memory boundary

corresponding to its type. On vectorization, the compiler checks whether each operand is

aligned on a vectorizable memory boundary or not. The compiler assumes that the dummy

array is aligned on a vectorizable memory boundary, since the alignment of the dummy array

is unknown at compilation. Then, if an actual array corresponding to the dummy array is not

aligned on a vectorizable memory boundary, an execution exception occurs. In this case,

each operand of vectorized operations must be aligned on the correct memory boundary.

4.2.26 Array Declaration

When the compiler checks whether vectorization would preserve the proper dependency

between array definitions and references, it assumes that all values of subscript expressions

are within the upper and lower limits of the corresponding size in the array declaration. If a

loop violating this condition is vectorized, correct results are not guaranteed.

When a loop containing IF statements is vectorized, arithmetic operations are carried out

only for the part that conditionally requires them, but arrays are referenced as many times

as the iteration count called for by the DO statement and array elements that should not be

referenced are referenced. Unless the arrays have enough area reserved to satisfy the

iteration count, memory access exceptions can occur as a result.

Example

DIMENSION A(10)

 :

 :

DO I=1,50

 IF(I.LE.10)THEN

 X=A(I)

 ELSE

 END IF

 :

 :

ENDDO

When a loop containing a branch out of the loop is vectorized, arithmetic operations are

carried out unconditionally for the part before the branch point, as many times as the iteration

count called for by the DO statement. Therefore, arithmetic operations that should not be

carried out are carried out, or data that should not be referenced are referenced. These

events can cause errors or exceptions.

Example

DO I=1,30

 X=SQRT(A(I))

 IF(X.LE.0.01)EXIT

ENDDO

If a branch occurs when I=10 and A(20)<0, an error occurs that should not occur.

4.2.27 Association of Dummy Arguments

When the compiler checks definition-reference dependency, it assumes that dummy

arguments with different names identify different elements. Therefore, if different dummy

arguments are associated with the same actual argument, and either of them is defined,

correct results are not guaranteed. If dummy arguments are associated with a common block

element, the same problem occurs. Such programming violates the Fortran standard.

Example

DIMENSION A(100)

 :

CALL SUB (A,A,100)

 :

END

SUBROUTINE SUB (A,B,N)

DIMENSION A(N),B(N)

DO I=1,N-1

 A(I+1)=X*B(I)

ENDDO

END

4.2.28 High-Speed I/O Techniques

There are two techniques for speeding up I/O operations.

 One involves program coding to reduce unnecessary I/O overhead

 The other involves file access to reduce the number of times I/O accesses external files.

This section explains the techniques for speeding up I/O operations in terms of these

approaches.

The compiler provides the file I/O analysis information output function (F_FILEINF) as a

support function for determining whether I/O operations are performed at a satisfactorily

high speed. This function is also explained here.

 Programming Techniques

 Unformatted I/O is recommended when possible. Format conversion is not done

and resulting precision errors are avoided.

 Avoid implied-DO lists in an I/O list, and use array names whenever possible. When

array names are used, the transfer of data between the I/O buffer and the user

area is done with one instruction. When an implied-DO list is used, I/O speed is

reduced by additional loop overhead.

Example

DIMENSION A(M,N)

WRITE(1)((A(I,J), I=1, M), J=1, N)

The above is less efficient than

WRITE(1)A

When an assumed-size dummy array is used, or when an implied-DO list must be used

because of programming considerations, the implied-DO list should be arranged so

that the implied loop processing is done only once. The information of the implied-DO

list may be collectively passed to the I/O routine. The overhead of I/O at execution

time is reduced, thereby increasing processing speed.

When array element names are specified in an implied-DO list, the values of subscripts

should be written in the following format:

A([+a*] I [+b])

where:

I DO variable

a,b Unsigned variable or constant

[] Optional

No expression should be written in the implied-DO list for the WRITE statement.

Example

ORIGINAL OPTIMIZED

DIMENSION A(10)

WRITE(1)(A(I)+X, I=1, 10)

DIMENSION A(10), B(10)

DO 10 I=1, 10

 10 B(I)=A(I)+X

WRITE(1)(B(I), I=1, 10)

The initial, terminal, and increment parameter should not be computed in the implied-

DO list.

Example

ORIGINAL OPTIMIZED

WRITE(1)(A(I), I=1, J*K)

JK=J*K

WRITE(1)(A(I), I=1, JK)

Since the implied-DO list is processed in batches, for an array of two or more

dimensions the outer loop is expanded. To reduce the overhead in expanding a DO

loop, reduce the number of calls to the runtime I/O routines as follows.

Make the DO loop such that the list of elements to be processed by the implied-DO list

is contiguous in the storage area. The data transfer between the I/O buffer and the

user area in the runtime I/O routine can be done with one instruction.

By exchanging the subscripts of the inner DO loop and that of the outer DO loop, the

DO loop becomes contiguous.

Example

ORIGINAL OPTIMIZED

DIMENSION A(M,N)

WRITE(1)((A(I,J), J=1, N), I=1,M)

DIMENSION A(M,N)

WRITE(1)((A(I,J), I=1, M), J=1, N)

Specify the variable of the innermost DO loop as one dimensional and avoid increment

parameter other than 1.

Make the DO loop so that only one I/O list may exist in one implied-DO list. If more

than one I/O list is desired, use two or more implied-DO lists.

Example

ORIGINAL OPTIMIZED

WRITE(1)(A(I), B(I), I=1, N) WRITE(1)(A(I), I=1, N), (B(I), I=1, N)

 Asynchronous I/O Functions

Asynchronous I/O functions are provided to increase speed by conducting I/O

processing and arithmetic processing simultaneously.

The asynchronous I/O function consists of an asynchronous READ statement and an

asynchronous WRITE statement that initiate data transfer between main memory and

secondary memory (such as a magnetic disk) and a WAIT statement. Application

programs can be executed more rapidly because the data transfer is processed in

parallel with the executable statements that follow the asynchronous READ or

asynchronous WRITE statement.

BUFFER IN/BUFFER OUT statements and UNIT/LENGTH functions are added for the

same purpose.

 Techniques for Effective File Access

To perform high-speed file access, the user should:

 Reduce the number of data transfers between the I/O buffer used by the compiler

and the user area.

 Improve efficiency in buffering (processing to store data in a buffer) using the I/O

buffer.

 Reduce the number of I/O operations on external files.

 Use optimum types of records.

The second and subsequent items are closely related to specifications of various runtime

options. This section describes these relationships.

The user can perform faster file access by satisfying the conditions of these items.

 I/O Buffer

This section describes the I/O buffer used by the compiler.

During execution of I/O statements, data is generally transferred between the user data area

and the system area via the I/O buffer. I/O routines perform various processing to effectively

use the I/O buffer. I/O routine processing affects file access.

The size of the I/O buffer can be altered by specifying the runtime option VE_FORT_SETBUF.

The default depends on file organization and other factors as follows:

 Sequential file (all file system types): 512 KB

 Direct file (when the value of the RECL specifier in the OPEN statement is 4096 bytes

or less): 4 KB

 Direct file (when the value of the RECL specifier in the OPEN statement is

2,048,000,000 bytes or more): 2,000,000 KB

 Direct file (when the value of the RECL specifier in other than the above): Raise

fractions of record length to unit (KB).

 Management for I/O Buffer

This section describes the I/O buffer used by the compiler.

 Sequential access I/O

I/O routines examine the length of each element of an I/O list. When the list is small (I/O-

buffer-size*2), data is buffered. When the list is large, data is transferred directly between

the user area and the system area without using the I/O buffer (bufferless I/O). If I/O mode

is output, the contents of the I/O buffer are output before direct I/O. If I/O mode is input,

the contents of the I/O buffer are input before direct I/O.

The above processing can speed up I/O operations because it effectively uses the I/O buffer

only for I/O statements that process small amounts of data.

The contents of the I/O buffer are output in the following cases:

‒ When the I/O buffer becomes full.

‒ When the CLOSE statement is executed.

‒ When an I/O statement which causes file positioning beyond the range of the

I/O buffer is executed.

‒ When the REWIND statement is executed after the WRITE statement.

 Direct access I/O

This processing is basically the same as for unformatted sequential access I/O. Unlike

sequential access, however, the contents of the I/O buffer are output (switched) in the

following cases:

‒ When the system detects a nonconsecutive record number (for example, when

record #3 is the next record processed after record #1) in the I/O statement.

‒ When the I/O mode is changed from output to input or vice versa.

Record numbers are normally nonconsecutive in a direct access file. In this case, the contents

of the I/O buffer are output (switched) frequently. Note that this type of processing gains

little benefit from effective use of the I/O buffer.

 Efficient Techniques

After it has been decided to perform processing using the I/O buffer, examine the

following measures for performing high-speed unformatted file access. An explanation

is given for each type (sequential/direct access) of file that is transferred.

 Sequential file

Run-time option VE_FORT_SETBUF is effective in the following cases:

‒ When a large number of I/O statements are used for a small amount of data

transfer.

‒ When the total size of the file is known. (In this case, when the size is specified

using this runtime option, data is not transferred to or from the file and all I/O

operations are performed using the I/O buffer.)

 Direct file

Run-time option VE_FORT_SETBUF is effective in the following cases:

When the record numbers to be processed by an I/O statement are contiguous (record #1,

record #2, record #3, etc.). Record numbers in a direct file are normally nonconsecutive.

When a value greater than the default is specified for runtime option VE_FORT_SETBUF in

cases other than the above, the size of data transferred at one time becomes larger. This

may degrade performance.

Chapter5 Conclusion

The tuning methodology specified in this document requires a skillful perspective of code

analysis to understand which part of the source code is high cost and how performance must

be extracted from it.

This procedure document must be used as the guide for understanding basics of tuning

applications for the NEC SX-Aurora TSUBASA.

Fine-tuning an application is a skill that may not necessarily be achieved through a specific

tuning process. Performance tuning is an act of experiment. It is necessary to understand

that there is no measure of highest performance. The application must be constantly

scrutinized iteratively to look for that one detail that may result in a higher performance.

The tuning personnel may encounter various examples of un-optimized:

 line-of-code

 code structure

 code flow structure; OR

 algorithm

A process can not completely define what to tune in what situation. It is a deep study of the

algorithm and code structure that can help the tuning personnel to extract best performance

from the code.

