LOGGING INTO ARC

You can connect to Arc using your abc123 id and an SSH client/terminal. Two-factor authentication is required and hence, you will need to register your account with DUO at passphrase.utsa.edu.

The hostname for accessing Arc is: \texttt{arc.utsa.edu}
The port number to connect is: 22

The complete SSH command is as follows, and \texttt{abc123} in this command should be replaced with your actual \texttt{abc123} id:

\texttt{ssh \ -p 22 abc123@arc.utsa.edu}

When you connect you will be prompted for your choice of DUO authentication mechanisms as shown below. Enter the number for the option you prefer. Follow the directions that you receive on your mobile device, and you will then be connected to Arc.
Duo two-factor login for abc123

Enter a passcode or select one of the following options:

1. Duo Push to XXX-XXX-1234
2. Phone call to XXX-XXX-1234
3. SMS passcodes to XXX-XXX-1234

Passcode or option (1-3):

ACCESSING COMPUTE NODES ON ARC

This section covers an overview of the steps for requesting access to the compute nodes for running jobs interactively and in batch mode using the Slurm job-scheduler and workload manager. Slurm enables submitting, monitoring, and cancelling jobs on Arc.

There are multiple partitions or queues on Arc. Table 1 shows the queue-names, and the constraints on using them.

Table 1. Slurm job queues on Arc

<table>
<thead>
<tr>
<th>Queue Name</th>
<th>Node Type</th>
<th>Max Nodes Per Job</th>
<th>Max Duration Per Job</th>
<th>Max jobs in Queue</th>
<th>Max Number of Cores per Node</th>
<th>Local Scratch Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>amdbigmem</td>
<td>AMD Epyc 7F32</td>
<td>1</td>
<td>72 hours</td>
<td>10</td>
<td>16 physical cores</td>
<td>No local scratch space</td>
</tr>
<tr>
<td></td>
<td>Processor</td>
<td></td>
<td></td>
<td></td>
<td>32 hyperthreads or virtual cores</td>
<td></td>
</tr>
</tbody>
</table>

This table provides an overview of the queues available on Arc, including the node type, maximum number of nodes per job, maximum duration per job, maximum number of jobs in the queue, maximum number of cores per node, and local scratch disk space.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Description</th>
<th>Numbers</th>
<th>Resources</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>amdgpu</td>
<td>AMD Epyc 7F32 Processor</td>
<td>1</td>
<td>72 hours</td>
<td>10</td>
</tr>
<tr>
<td>amdonly</td>
<td>AMD Epyc 7F32 Processor</td>
<td>1</td>
<td>72 hours</td>
<td>10</td>
</tr>
<tr>
<td>amdvcompiler</td>
<td>Intel CascadeLake</td>
<td>1</td>
<td>2 hours</td>
<td>10</td>
</tr>
<tr>
<td>amdvvector</td>
<td>AMD Epyc 7F32 Processor, Co-Processor: NEC Vector Engine</td>
<td>1</td>
<td>72 hours</td>
<td>10</td>
</tr>
<tr>
<td>bigmem</td>
<td>Intel CascadeLake</td>
<td>2</td>
<td>72 hours</td>
<td>10</td>
</tr>
<tr>
<td>computel</td>
<td>Intel CascadeLake</td>
<td>20</td>
<td>72 hours</td>
<td>10</td>
</tr>
<tr>
<td>compute2</td>
<td>Intel CascadeLake</td>
<td>20</td>
<td>72 hours</td>
<td>10</td>
</tr>
<tr>
<td>Name</td>
<td>Processor</td>
<td>Model</td>
<td>Number of GPUs</td>
<td>Time Limit</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>computedev</td>
<td>Intel CascadeLake</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dgxa100</td>
<td>AMD Epyc 7442</td>
<td>8 x NVidia</td>
<td>1</td>
<td>Unlimited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A100 GPUs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gpu1v100</td>
<td>Intel CascadeLake</td>
<td>1 x NVidia</td>
<td>1</td>
<td>72 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla V100S GPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gpudev</td>
<td>Intel CascadeLake</td>
<td>1 x NVidia</td>
<td>1</td>
<td>2 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla V100S GPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gpu2v100</td>
<td>Intel CascadeLake</td>
<td>2 x NVidia</td>
<td>1</td>
<td>72 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla V100S GPUs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gpu4v100</td>
<td>Intel CascadeLake</td>
<td>4 x NVidia</td>
<td>1</td>
<td>72 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla V100 GPUs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUNNING JOBS INTERACTIVELY WITH THE SRUN COMMAND

You can get interactive access to a compute, GPU or node by using the `srun` command from a login node.

If you are proceeding with running the commands below for the interactive session, please skip the steps for the batch job submission corresponding to each example.

Run the following command to get interactive access on a non-GPU compute node:
```
srun -p compute1 -n 1 -t 01:30:00 --pty bash
```

Run the following command to get interactive access on a GPU node:
```
srun -p gpulv100 -n 1 -t 01:30:00 --pty bash
```

Note: There are multiple GPU and non-GPU partitions/queues on Arc. Please substitute the right partition/queue name (e.g., compute1 and gpulv100) in the `srun` commands above.

SUBMITTING BATCH JOBS WITH THE SBATCH COMMAND

The Slurm `sbatch` command is used to submit a batch job to one of the Arc queues mentioned in Table 1 and following is its syntax:
```
[abc123@login003 ~]$ sbatch job_script.slurm
```

In the command above, `job_script.slurm` is a text file containing `#SBATCH` directives and shell commands that describe how the job that is being submitted will run. The details of the job scripts’s contents dependnon the dypte of job that you wish to run.

In the job script:(1) use `#SBATCH` directives to request computing resources (e.g., 2 nodes for 1 hour); and then (2) use regular Linux shell commands to specify the tasks that you would like to do once your job starts running. You can choose to run a single
executable (of an application), or can combine different executables in the same jobscript to run either one after another or simultaneously.

Table 2. Options to use with the `#SBATCH` directive in a Slurm job-script

<table>
<thead>
<tr>
<th>Options</th>
<th>Full form of Option Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| -J | --job-name | • Specify a name for the job
• This is a required option |
| -o | --output | • Instruct Slurm to write the job’s standard output to the file named after the -o flag
• This is a required option |
| -p | --partition | • Request a specific partition or queue for running the job
• This is a required option |
| -t | --time | • Specify the maximum anticipated run-time of the job
• This is a required option |
| -N | --nodes | • Specify the number of nodes required for the job
• This is a required option |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n</code></td>
<td>The number of tasks that will be launched on a node.</td>
</tr>
<tr>
<td><code>--ntasks</code></td>
<td>The maximum number of tasks can be set as equal to the maximum number of physical cores in the node in a queue, or the maximum number of hyperthreads or virtual cores.</td>
</tr>
<tr>
<td></td>
<td>This is a required option.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--mailuser=email_id</code></td>
<td>Replace email_id with your actual email id to receive notifications related to your job start, end, and failure. This option is meant to be used in conjunction with the <code>mailtype</code> option.</td>
</tr>
<tr>
<td></td>
<td>Using this option is not required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--mailtype=begin</code></td>
<td>Here, a mail will be sent to notify the beginning of the job.</td>
</tr>
<tr>
<td></td>
<td>“begin” can be replaced with “end”, “fail”, or “all” to receive other notifications</td>
</tr>
<tr>
<td></td>
<td>This option is meant to be used in conjunction with the <code>mailuser</code> option.</td>
</tr>
<tr>
<td></td>
<td>Using this option is not required.</td>
</tr>
</tbody>
</table>

A sample batch job-script is shown in Listing 1 and the options are explained. Make sure you are connected to the Arc system (``ssh -p 22 username@arc.utsa.edu``) and are on the login node for submitting a batch job.
#!/bin/bash
#
#--
Sample Slurm job script for Arc nodes
#
#SBATCH -J myjob # Job Name
#SBATCH -o myjob.o%j # Name of the stdout output file
#SBATCH -e myjob.e%j # Name of stderr error file
#SBATCH -p compute1 # Queue (partition) name
#SBATCH -N 1 # Total # of nodes (must be 1 for serial)
#SBATCH -n 1 # Total # of mpi tasks (should be 1 for serial)
#SBATCH -t 01:30:00 # Run time (hh:mm:ss)

#Put other commands such as module load if needed after this line (All commands must follow #SBATCH directives)
#
#Launch code...

./mycode.exe

Listing 1. Sample Slurm Job-Script

Note-1: If you want to activate the email notifications for this job then you will need to add the following email in the Slurm job script shown above before you list any of the Linux shell commands to run the job.

#SBATCH --mail-type=ALL
#SBATCH --mail-user=username@utsa.edu

Note-2: The following Slurm job options are mandatory and must be included with every job: * [-n, -N, -t, -p] *

OTHER SLURM COMMANDS FOR JOB MANAGEMENT

After you have submitted a job through Slurm – either interactively or through the batch job-script – there are additional commands that you can run to monitor or cancel the job, or create dependencies such as holding the execution of a future job till the current one has completed.
Table 3: Overview of Other Job Management commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
</table>
| squeue | squeue -u uname | squeue -u abc123
Here abc123 is the username with which you log into Arc. |
| scancel | scancel jobid | scancel 8088547
Here 8088547 is the job id that you received after your job was submitted. |
| sinfo | sinfo | sinfo |
| sbatch \ --dependency | sbatch \ --dependency=afterok:jobid \ jobscript | sbatch \ --dependency=afterok:8088568 new_job.slurm
Here 8088568 is the job id that you received after you submitted a previous job on which you would like to create a dependency in the current job. |
| scontrol | scontrol show job=jobid | scontrol show \ job=8090259
Here 8090259 is the job id that you received after you submitted a previous job, whose detailed information you wanted to check. |
| sacct | sacct --starttime date | sacct --starttime \ 2021-07-10
Here 2021-07-10 is the date on ar after which you want to see the jobs |
SQUEUE

You can check the status of your job - whether it is pending, running, or completing - by using the squeue command. This command can also help you find out the job ids associated with all your pending or running jobs so that you can use it with the scancel or sbatch --dependency command (its syntax is also shown in Table 3).

If you just enter the `squeue` command and press enter, it will show you the list of all the jobs currently waiting or running on the system (and not necessarily yours):

```
$ squeue
JOBID PARTITION NAME     USER  ST  TIME  NODES  NODELIST(REASON)
1429  gpu2v100  test_job  abc123  PD  0:00     2  (PartitionNodeLimit)
```

If you specify your username with the `-u` option to the `squeue` command then it will show you the status of all the jobs associated with your account:

```
$ squeue -u abc123
```

A sample output of the `squeue` command looks as follows:

```
JOBID PARTITION NAME     USER  ST  TIME  NODES  NODELIST(REASON)
1429  gpu2v100  test_job  abc123  PD  N/A     2  (PartitionNodeLimit)
```

The column labeled "ST" displays each job’s status:

- "PD" means "Pending" (waiting)
- "R" means "Running"
- "CG" means "Completing" (or cleaning up after exiting the job script)

If you specify the `--start` option to the `squeue` command then it will show you the status of all the jobs associated with your account:

```
$ squeue --start
JOBID PARTITION NAME     USER  ST  START_TIME  NODES  SCHED  NODES  NODELIST(REASON)
1429  gpu2v100  test_job  abc123  PD  N/A     2  (null)  (PartitionNodeLimit)
```
SCANCEL

You can cancel a job as long as it is in the pending or running state using the `scancel` command. A sample of `scancel` command is shown in Table 3. You can find out the job ids associated with all your pending or running jobs by using the `squeue` command (its syntax is also shown in Table 3).

```bash
$ squeue -u abc123
 JOBID PARTITION  NAME     USER       ST TIME NODES NODELIST(REASON)
1429  gpu2v100  test_job  abc123  PD  0:00      2 (PartitionNodeLimit)
1440  compute1  bash    abc123  R   4:11      1 c001
```

$ scancel 1440

SBATCH --DEPENDENCY

The `sbatch` command can be used to manage workflows that involve multiple steps such that the output of one step (or job) is the input to another step (or job) by using the `--dependency` option. The syntax and example of using this command is shown in Table 3. As an example, let us assume that we submit our first job (`new_job1.slurm`) as below and get a job id 1441 by the Slurm job scheduler.

```bash
$ sbatch new_job1.slurm
Submitted batch job 1441
```

If the completion of this job is required before we submit another job (`new_job2.slurm`), then we can create a dependency between this new job and the old job (1441) as follows:

```bash
$ sbatch --dependency=afterok:1441 new_job2.slurm
Submitted batch job 1442
```
SINFO

You can monitor the status of the different partitions or queues on Arc using the `sinfo` command. As an example, the following command will show the number of nodes that are Available, Idle, Other, and Total in each partition on Arc:

```
$ sinfo -S+P -o "%18P %8a %20F"
PARTITION          AVAIL    NODES(A/I/O/T)
amdbigmem          up       0/1/0/1
amdgpu             up       0/2/0/2
amdonly            up       0/1/0/1
amdvcompiler       up       0/1/0/1
amdvector          up       0/5/0/5
bigmem             up       1/1/0/2
compute1*          up       47/18/0/65
compute2           up       8/17/0/25
computedev         up       0/5/0/5
dgxa100            up       1/2/0/3
gpu1v100           up       3/25/0/28
gpu2v100           up       0/5/0/5
gpu4v100           up       0/2/0/2
gpudev             up       0/2/0/2
```

SCONTROL

The `scontrol` command provides detailed information about the configuration of a specific job. It is used to view or modify Slurm configuration including: job, job step, node, partition, reservation, and overall system configuration. As an example, let us assume that we have submitted a job `new_job1.slurm` as below and get a job id `1441` by the Slurm job scheduler.

```
$ sbatch new_job1.slurm
Submitted batch job 1441
```
We can see the detailed information about this job as follows:

```
$ scontrol show job=1441
JobId=1441 JobName=helloWorldC
  UserId=abc123(860633341) GroupId=abc123(860633341) MCS_label=N/A
  Priority=20681 Nice=0 Account=abc123 QOS=normal
  JobState=COMPLETED Reason=None Dependency=(null)
  Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
  RunTime=00:00:00 TimeLimit=00:02:00 TimeMin=N/A
  AccrueTime=2021-07-12T20:29:38
Start=2021-07-12T20:29:38 EndTime=2021-07-12T20:29:38 Deadline=N/A
  PreemptTime=None SuspendTime=None SecsPreSuspend=0
  LastSchedEval=2021-07-12T20:29:38
Partition=compute1 AllocNode:Sid=c001:19615
  ReqNodeList=(null) ExcNodeList=(null)
  NodeList=c002
  BatchHost=c002
  NumNodes=1 NumCPUs=80 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:**
  TRES=cpu=80,node=1,billing=80
  Socks/Node=* NtasksPerN:B:S:C=0:0:** CoreSpec=*
  MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
  Features=(null) DelayBoot=00:00:00
  OverSubscribe=NO Contiguous=0 Licenses=(null) Network=(null)
Command=/home/abc123/documentation/serial_jobs/serialc/GNU/helloworldc.slu
rm WorkDir=/home/abc123/documentation/serial_jobs/serialc/GNU
StdErr=/home/abc123/documentation/serial_jobs/serialc/GNU/helloWorldC.txt
StdIn=/dev/null
StdOut=/home/abc123/documentation/serial_jobs/serialc/GNU/helloWorldC.txt
Power=
```

SACCT

The `sacct` command displays job accounting data stored in the job accounting log file or Slurm database in a variety of forms for your analysis. This command displays information on jobs, job steps, status, and exit codes by default. You can tailor the output with the use of the `--format=` option to specify the fields to be shown. As an example, following command will show all the jobs that started on or after the date passed as an argument to the `starttime` option:
RUNNING JOBS ON THE COMPUTE NODES ON ARC

A sample R script is shown below and all this code does is print “Hello World!!” to standard output.

```r
print("Hello World!!")
```

Add execute permissions on the R script file as follows:

```
[username@login001]$ chmod +x program_name.r
```

The R program can be run either in batch mode using a Slurm batch job-script or interactively on a compute node.

Running the script in Interactive-Mode: The executable can be run interactively on a compute node using the following set of commands and the output will be displayed on the terminal:

```
[username@login001]$ srun -p compute1 -n 1 -t 00:05:00 --pty bash
[username@c001]$ ml gnu8/8.3.0
[username@c001]$ ml R/3.6.1
[username@c001]$ Rscript program_name.r
"Hello World!!"
```
If you are currently on a compute node and would like to switch back to the login node then please enter the `exit` command as follows:

```
[username@c001]$ exit
```

Running the script in Batch-Mode: A sample Slurm batch job-script to run the serial `program_name.r` in batch mode is shown in Listing 2. This script should be run from a login node.

```
#!/bin/bash
#SBATCH -J program_name
#SBATCH -o program_name.txt
#SBATCH -p compute1
#SBATCH -t 00:05:00
#SBATCH -N 1
#SBATCH -n 1

ml gnu8/8.3.0
ml R/3.6.1
Rscript program_name.r
```

Listing 2: Batch Job Script for R code (job_script16.slurm)

The job-script shown in Listing 2 can be submitted as follows:

```
[username@login001]$ sbatch job_script16.slurm
```

The output from the Slurm batch-job shown in Listing 2 can be checked by opening the output file as follows:

```
[username@login001]$ cat program_name.txt

"Hello World!!"
```

ACCESSING DGX NODES ON ARC

This section covers an overview of the steps for requesting access to the DGX nodes for running jobs interactively and in batch mode. Access to the dgxa100 Slurm partition (and its
corresponding DGX nodes) is available to ONLY Matrix AI consortium members authorized by Dr. Dhireesha Kudithipudi.

Table 4 shows the details of the DGX queue and its associated constraints.

<table>
<thead>
<tr>
<th>Queue Name</th>
<th>Node Type</th>
<th>Max Nodes Per Job</th>
<th>Max Duration Per Job</th>
<th>Max jobs in Queue</th>
<th>Max Number of Cores per Node</th>
<th>Local Scratch Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgxa100</td>
<td>AMD Epyc 7442, 8 x NVIDIA A100 GPUs</td>
<td>1</td>
<td>Unlimited</td>
<td>10</td>
<td>128 physical cores or virtual cores</td>
<td>25TB local raid storage</td>
</tr>
</tbody>
</table>

RUNNING JOBS INTERACTIVELY ON THE DGX NODES WITH SRUN

You can get interactive access to a DGX node by using the `srun` command from a login node.

Authorized users can run the following command to get interactive access to a DGX node:

```
srun -p dgxa100 -n 1 -t 01:30:00 --pty bash
```
SUBMITTING BATCH JOBS ON THE DGX NODES WITH SBATCH

The Slurm sbatch command can be used to submit a batch job to the DGX queue mentioned in Table 4. The following example shows the syntax used to submit the job:

```
[abc123@login003 ~]$ sbatch dgx_job_script.slurm
```

In the command above, `dgx_job_script.slurm` is a text file containing #SBATCH directives and shell commands that describe how the job that is being submitted will run. The details of the job scripts contents depend on the type of job that you wish to run. In the job script:(1) use #SBATCH directives to request computing resources (e.g., 2 nodes for 1 hour); and then (2) use regular Linux shell commands to specify the tasks that you would like to do once your job starts running. You can choose to run a single executable (of an application), or can combine different executables in the same jobscript to run either one after another or simultaneously.

The section in this document titled “SUBMITTING BATCH JOBS WITH THE SBATCH COMMAND” contains detailed descriptions of the options to use with the #SBATCH directive in a Slurm job-script.

A sample DGX batch job-script is shown in Listing 3 and the options are explained. Make sure you are connected to the Arc system (`ssh -p 22 username@arc.utsa.edu`) and are on the login node for submitting a batch job.
#!/bin/bash

Sample DGX Slurm job script for Arc nodes

#SBATCH -J myjob # Job Name
#SBATCH -o myjob.o%j # Name of the stdout output file
#SBATCH -e myjob.e%j # Name of stderr error file
#SBATCH -p dgxa100 # Queue (partition) name
#SBATCH -N 1 # Total # of nodes (must be 1 for serial)
#SBATCH -n 1 # Total # of mpi tasks (should be 1 for serial)
#SBATCH -t 01:30:00 # Run time (hh:mm:ss)

#Put other commands such as module load if needed after this line (All commands must follow #SBATCH directives)
Launch code...

./mycode.exe

Listing 3. Sample DGX Slurm Job-Script