

RUNNING CONCURRENT TASKS FROM A JOB AND USING GNU PARALLEL

Table of Contents

1. OVERVIEW ... 1

2. CLONE THE GITHUB REPOSITORY ... 2

3. RUNNING MULTIPLE COPIES OF ONE OR MORE EXECUTABLES FROM THE SAME SLURM JOB 3

4. RUNNING AN EXECUTABLE WITH MULTIPLE DIFFERENT PARAMETERS SIMULTANEOUSLY USING
GNU PARALLEL... 9

5. USING GNU PARALLEL TO FIND THE PRIME FACTORS OF GIVEN NUMBERS 13

1. OVERVIEW

This section of the user-guide covers the steps to run sample serial and parallel code in C, C++, Fortran,
Python, and R using both interactive and batch job submission modes. Where relevant, separate steps
for using Intel and GNU compilers are covered.

Please note that all code should be run only on the compute nodes either interactively or in batch
mode. Note that when a batch job is submitted on the login node, the batch job script specifies that the
commands are to be run on the compute nodes. Please DO NOT run any code on the login nodes.
Acceptable use of login nodes is as follows: installing code, file transfer, file editing, and job submission
and monitoring.

Note: The examples provided in this document include the loading of specific Linux environment
modules. These modules adjust your shell configuration, such as the $PATH environment variable, to
accommodate particular software packages. Further details and information regarding the
management of Linux modules, such as loading, unloading, swapping, and other operations, can be
found here: ModuleEnvironments < ARC < UTSA Research Support Group.

https://hpcsupport.utsa.edu/foswiki/bin/view/ARC/ModuleEnvironments

2. CLONE THE GITHUB REPOSITORY

If you want to get a copy of all the programs and scripts used in the examples shown in this document,
you can clone the GitHub repository for the examples using the following command:

git clone https://github.com/ritua2/documentation

If you cloned the GitHub repository, you can switch to the documentation directory with the following
command to find the scripts and programs referred to throughout the document:

[login001]$ cd documentation

The documentation directory structure is shown below (split across four columns):

When you switch to the subdirectories within the documentation folder, the Slurm job script files
are available with the *.slurm extension.

If you do not want to clone the aforementioned GitHub repository, you should be able to copy the code
shown in the listings into files with appropriate names and file extensions.

https://github.com/ritua2/documentation

3. RUNNING MULTIPLE COPIES OF ONE OR MORE EXECUTABLES FROM THE SAME SLURM JOB

Depending upon the memory and CPU needs of your application, you may be able to bundle multiple
copies of the same application or different applications in the same Slurm job and also have them start
concurrently. They can be started concurrently on the same node or on different nodes. This can help
you utilize the compute nodes more efficiently and reduce the overall time-to-results. However, please
be aware that if your application is memory-intensive, you may want to consider the amount of memory
that is required per application process before scheduling multiple concurrent and independent
applications on the same node. Oversaturating a node can cause a job to crash due to memory starvation.

A sample C code is shown in Listing 31. This code prints “Hello World!!: #!” to standard output
where # is replaced by the iteration number, and the iteration number depends upon the argument
passed to the executable at run-time.

include <stdio.h>

include<stdlib.h>

int main(int argc, char *argv[]){

 int n = atoi(argv[1]);

 for(int i=1;i<=n;i++){

 printf("Hello World!!: %d \n",i);

 }

 return 0;

}

Listing 31: Sample C program – hello_world.c
(documentation/multiExes/serial/hello_world.c)

If you would like to compile the C example using the GNU C compiler, you can run the following
commands:

[login001]$ ml gnu8/8.3.0

[login001]$ gcc -o hello_world hello_world.c

If you would like to compile the C example using the Intel OneAPI, you can run the following commands:

[login001]$ ml intel/oneapi/2021.2.0

[login001]$ icc -std=c99 -o hello_world hello_world.c

The executable hello_world can be run either in a batch mode using a Slurm batch job-script or
interactively on a compute node.

Running multiple copies of an executable concurrently and interactively on a compute node with
different input parameters: Multiple copies of the executable hello_world can be run
interactively and concurrently on a compute node with different input parameters using the following
set of commands, and the output will be displayed on the terminal:

[login001]$ srun -p compute1 -n 5 -t 00:05:00 --pty bash

[c001]$./hello_world 1& ./hello_world 2& ./hello_world 3&

./hello_world 4& ./hello_world 5

Hello World!!: 1

Hello World!!: 2

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 1

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 5

If you are currently on a compute node and would like to switch back to the login node then enter the

exit command as follows:

[c001]$ exit

Bundling Multiple Copies of Executables of a Serial Program in a Slurm Job-Script: A sample Slurm
batch job-script to run the executable named hello_world is shown in Listing 31. This batch script
corresponds to the serial program hello_world.c. This script should be run from a login node.

#!/bin/bash

#SBATCH -J hello_world_cm

#SBATCH -o hello_world.txt

#SBATCH -p compute1

#SBATCH -t 00:02:00

#SBATCH -N 1

#SBATCH -n 5

./hello_world 1 &

./hello_world 2 &

./hello_world 3 &

./hello_world 4 &

./hello_world 5 # executable corresponds to code in Listing 31

Listing 32: Batch Job Script for C codes – hello_world.slurm
(documentation/multiExes/serial/hello_world.slurm)

The job-script shown in Listing 32 can be submitted as follows:

[login001]$ sbatch hello_world.slurm

The output from the Slurm job shown in Listing 32 can be checked by opening the output file as follows:

[login001]$ cat hello_world.txt

Hello World!!: 1

Hello World!!: 2

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 1

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 5

Running Multiple Executables of Parallel Programs Interactively and Concurrently: A sample C
code is shown in Listing 33. This code prints “Hello world from processor #, rank #
out of # processors”, where # varies depending upon the number of MPI processes running
the executable.

#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) {

 // Initialize the MPI environment

 MPI_Init(NULL, NULL);

 // Get the number of processes

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int world_rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 int name_len;

 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message

 printf("Hello world from processor %s, rank %d out of

%d processors\n",

 processor_name, world_rank, world_size);

 // Finalize the MPI environment.

 MPI_Finalize();

 return 0;

}

Listing 33: Sample C+MPI code – hello_world.c
(documentation/multiExes/mpi_multiexes/hello_world.c)

Another sample C code is shown in Listing 34. This code prints “Bye world from processor
#, rank # out of # processors”, where # varies depending upon the number of MPI
processes engaged in running the executable.

For compiling the C examples shown in Listings 33 and 34 using Intel OneAPI, you can run the following
commands:

[login001]$ ml intel/oneapi/2021.2.0

[login001]$ mpicc -o hello_world hello_world.c

[login001]$ mpicc -o bye_world bye_world.c

#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) {

 // Initialize the MPI environment

 MPI_Init(NULL, NULL);

 // Get the number of processes

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int world_rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 int name_len;

 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message

 printf("Bye world from processor %s, rank %d out of %d

processors\n",

 processor_name, world_rank, world_size);

 // Finalize the MPI environment.

 MPI_Finalize();

 return 0;

}

Listing 34: Sample “Bye World” C+MPI code - bye_world.c
(documentation/multiExes/mpi_multiexes/bye_world.c)

The executables hello_world and bye_world can be run concurrently in the same interactive
session using the set of commands below and the output will be displayed on the terminal.

[login001]$ srun -p compute1 -n 24 -N 2 -t 00:05:00 --pty bash

[c001]$ mpirun -np 12 ./hello_world & mpirun -np 12 ./bye_world

Hello world from processor c002, rank 4 out of 12 processors

Hello world from processor c002, rank 7 out of 12 processors

Hello world from processor c002, rank 6 out of 12 processors

Hello world from processor c002, rank 8 out of 12 processors

Bye world from processor c002, rank 7 out of 12 processors

Hello world from processor c002, rank 3 out of 12 processors

Bye world from processor c002, rank 9 out of 12 processors

Bye world from processor c002, rank 11 out of 12 processors

Hello world from processor c002, rank 1 out of 12 processors

Bye world from processor c002, rank 4 out of 12 processors

Hello world from processor c002, rank 2 out of 12 processors

Hello world from processor c002, rank 11 out of 12 processors

Hello world from processor c002, rank 0 out of 12 processors

Bye world from processor c002, rank 5 out of 12 processors

Hello world from processor c002, rank 5 out of 12 processors

Bye world from processor c002, rank 8 out of 12 processors

Bye world from processor c002, rank 2 out of 12 processors

Bye world from processor c002, rank 10 out of 12 processors

Bye world from processor c002, rank 1 out of 12 processors

Hello world from processor c002, rank 10 out of 12 processors

Bye world from processor c002, rank 6 out of 12 processors

Hello world from processor c002, rank 9 out of 12 processors

Bye world from processor c002, rank 0 out of 12 processors

Bye world from processor c002, rank 3 out of 12 processors

If you are currently on a compute node and would like to switch back to the login node then enter the

exit command as follows:

[c001]$ exit

Bundling Multiple Executables of Parallel Programs in a Job-Script for Concurrent Execution: A
sample Slurm batch job-script to run the executables named hello_world and bye_world is
shown in Listing 35. This batch script corresponds to the parallel programs hello_world.c (Listing
33) and bye_world.c(Listing 34). This script should be run from a login node.

#!/bin/bash

#SBATCH -J hello_world_mpicm

#SBATCH -o hello_world.txt

#SBATCH -p compute1

#SBATCH -t 00:10:00

#SBATCH -N 2

#SBATCH -n 24

mpirun -np 12 ./hello_world &

mpirun -np 12 ./bye_world #the executable name is obtained

after compiling the programs

Listing 35: Batch Job Script for C+MPI codes – hello_world.slurm
(documentation/multiExes/mpi_multiexes/hello_world.slurm)

The job-script shown in Listing 35 can be submitted as follows:

[login001]$ sbatch hello_world.slurm

The output from the Slurm batch-job shown in Listing 35 can be checked by opening the output file as
follows:

[login001]$ cat hello_world.txt

Hello world from processor c002, rank 4 out of 12 processors

Hello world from processor c002, rank 7 out of 12 processors

Hello world from processor c002, rank 6 out of 12 processors

Hello world from processor c002, rank 8 out of 12 processors

Bye world from processor c002, rank 7 out of 12 processors

Hello world from processor c002, rank 3 out of 12 processors

Bye world from processor c002, rank 9 out of 12 processors

Bye world from processor c002, rank 11 out of 12 processors

Hello world from processor c002, rank 1 out of 12 processors

Bye world from processor c002, rank 4 out of 12 processors

Hello world from processor c002, rank 2 out of 12 processors

Hello world from processor c002, rank 11 out of 12 processors

Hello world from processor c002, rank 0 out of 12 processors

Bye world from processor c002, rank 5 out of 12 processors

Hello world from processor c002, rank 5 out of 12 processors

Bye world from processor c002, rank 8 out of 12 processors

Bye world from processor c002, rank 2 out of 12 processors

Bye world from processor c002, rank 10 out of 12 processors

Bye world from processor c002, rank 1 out of 12 processors

Hello world from processor c002, rank 10 out of 12 processors

Bye world from processor c002, rank 6 out of 12 processors

Hello world from processor c002, rank 9 out of 12 processors

Bye world from processor c002, rank 0 out of 12 processors

Bye world from processor c002, rank 3 out of 12 processors

4. RUNNING AN EXECUTABLE WITH MULTIPLE DIFFERENT PARAMETERS SIMULTANEOUSLY USING
GNU PARALLEL

GNU Parallel is a tool that is used for running parameter-sweep applications. It helps in running multiple
copies of an executable simultaneously with different parameters read from an input file as a part of
the same Slurm job. GNU Parallel is installed on Arc and can be used after loading the
parallel/20210722 module. For detailed information on this tool, please refer to the GNU
Parallel documentation page.

The general syntax of the command for using the GNU Parallel tool is as follows:

parallel --joblog logfilename.txt ./exefilename {1} ::::

paramfile.txt

In the command above, the option “--joblog” creates a log file that can be used to resume the
execution of the job in case it is interrupted. For resuming a job after an interruption, the “--
resume-failed” option should be used along with the previously saved log file as shown in the
following command:

parallel --resume-failed --joblog logfilename.txt ./exefilename

{1} :::: paramfile.txt

https://www.gnu.org/software/parallel/man.html
https://www.gnu.org/software/parallel/man.html

A sample C code that will serve as our parameter-sweep application is shown in Listing 36. This code
prints “Hello World!!: #” multiple times to the standard output such that # is replaced by the
iteration number, and the total number of iterations is determined by the argument passed at run-time.

include <stdio.h>

include<stdlib.h>

int main(int argc, char *argv[]){

 int n = atoi(argv[1]);

 for(int i=1;i<=n;i++){

 printf("Hello World!!: %d \n",i);

 }

 return 0;

}

Listing 36: Sample C code – hello_world.c
(documentation/GNUparallel/hello_world.c)

If you would like to compile the example in listing 36 using the GNU C compiler, you can run the
following commands:

[login001]$ ml gcc/11.2.0

[login001]$ gcc -o hello_world hello_world.c

If you would like to compile the example in Listing 36 using Intel OneAPI, you can run the following
commands:

[login001]$ ml intel/oneapi/2021.2.0

[login001]$ icc -std=c99 -o hello_world hello_world.c

The contents of the sample input file that provide arguments to the executable in the Slurm batch job
script are shown in Listing 37.

[login001]$ cat myout.txt

1

2

3

4

5

Listing 37: Text file containing arguments for the executables - myout.txt
(documentation/GNUparallel/myout.txt)

The executable hello_world can be run either in a batch mode using a Slurm batch job-script or
interactively on a compute node.

Running the Executable in Interactive-Mode: The executable can be run interactively on a compute
node using the following set of commands and the output will be displayed on the terminal:

[login001]$ srun -p compute1 -n 20 -t 00:05:00 --pty bash

[c001]$ ml gcc/11.2.0

[c001]$ ml parallel/20210722

[c001]$ parallel --joblog logfilename.txt ./hello_world {1} ::::

myout.txt

Hello World!!: 1

Hello World!!: 1

Hello World!!: 2

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 5

If you would like to put the output in separate files for each instance, use the following Parallel option:

[c001]$ parallel --results outdir ./hello_world {1} ::::

myout.txt

The output files can be found in outdir/1/ directory after running the aforementioned command:

[c001]$ cd outdir/1

[c001]$ ls

1 2 3 4 5 seq stderr stdout

[c001]$ cd 2

[c001]$ ls

seq stderr stdout

[c001]$ cat stdout

Hello World!!: 1

Hello World!!: 2

Logs from the parallel command above can be checked by opening the log file as follows:

[c001]$ cat logfilename.txt

Seq Host Starttime JobRuntime Send Receive Exitval

Signal Command

1 : 1626380539.453 0.003 0 18 0 0

./hello_world 1

2 : 1626380539.457 0.009 0 36 0 0

./hello_world 2

3 : 1626380539.462 0.009 0 54 0 0

./hello_world 3

4 : 1626380539.466 0.008 0 72 0 0

./hello_world 4

5 : 1626380539.471 0.006 0 90 0 0

./hello_world 5

If you are currently on a compute node and would like to switch back to the login node then enter the

exit command as follows:

[c001]$ exit

Running GNU Parallel Job in Batch-Mode: A sample Slurm batch job-script to run the executable
named hello_world with GNU Parallel is shown in Listing 38. This batch script corresponds to the
serial program hello_world.c. This script should be run from a login node.

#!/bin/sh

#SBATCH -J hello_world_gnuc

#SBATCH -o hello_world.txt

#SBATCH -p compute1

#SBATCH -t 00:05:00

#SBATCH -N 1

#SBATCH -n 20

ml gcc/11.2.0

ml parallel/20210722

parallel --joblog mylog.txt ./hello_world {1} :::: myout.txt

#executable name hello_world is obtained after compiling the

program

Listing 38: Batch Job Script for C code – hello_world.slurm
(documentation/GNUparallel/hello_world.slurm)

The parallel command shown in Listing 38 will run the hello_world executable with different
parameters read from the input file named myout.txt. This command will also create a log file
named mylog.txt that can be used to resume execution in case it is interrupted. This program will
print “Hello World!!: #”, where # varies depending upon input from the myout.txt.

The job-script shown in Listing 38 can be submitted as follows :

[login001]$ sbatch hello_world.slurm

The output from the Slurm batch-job shown in Listing 37 can be checked by displaying the contents of
the output file as follows:

[login001]$ cat hello_world.txt

Hello World!!: 1

Hello World!!: 1

Hello World!!: 2

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 1

Hello World!!: 2

Hello World!!: 3

Hello World!!: 4

Hello World!!: 5

Logs from the Slurm batch-job shown in Listing 38 can be checked by displaying the contents of the log
file as follows:

[login001]$ cat mylog.txt

Seq Host Starttime JobRuntime Send Receive Exitval

Signal Command

1 : 1626294133.948 0.003 0 18 0 0

./hello_world 1

2 : 1626294133.952 0.009 0 36 0 0

./hello_world 2

3 : 1626294133.957 0.007 0 54 0 0

./hello_world 3

4 : 1626294133.960 0.007 0 72 0 0

./hello_world 4

5 : 1626294133.964 0.007 0 90 0 0

./hello_world 5

5. USING GNU PARALLEL TO FIND THE PRIME FACTORS OF GIVEN NUMBERS

Another example of a parameter-sweep application is shown in the sample C code in Listing 39. This
code prints “The prime factors of # are:*” multiple times to standard output such that
is replaced by the input numbers, and * is replaced by the prime factors of that number.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main(int argc, char** argv){

 int n,i;

 sscanf(argv[1],"%d",&n);

 printf(" The prime factors of %d are:", n);

 while (n%2 == 0){

 n = n/2;

 }

 for(i = 3; i <= (int)sqrt(n); i = i+2){

 while (n%i == 0){

 printf("%d ", i);

 n = n/i;

 }

 }

 if (n > 2)

 printf ("%d", n);

 printf("\n");

 return 0;

}

Listing 39: Sample parameter-sweep application – prime_fac.c
(documentation/GNUparallel/PrimeFactorEx/prime_fac.c)

If you would like to compile the example in listing 39 using the GNU C compiler, you can run the
following commands:

[login001]$ ml gnu8/8.3.0

[login001]$ gcc -o prime_fac prime_fac.c -lm

Note: The math library (libm.so) must be linked in by using -lm when building the executable.

If you would like to compile the example in listing 39 using Intel OneAPI, you can run the following
commands:

[login001]$ ml intel/oneapi/2021.2.0

[login001]$ icc -o prime_fac prime_fac.c

The contents of the sample input file to provide arguments to the executable prime_fac is shown
in Listing 40.

[login001]$ cat paramfile.txt

1234567896

1234567891

1234567899

1234567895

1234567847

1234567941

1234568927

1234578957

1234689630

1234578960

1234678975

1235678933

1245678998

1345678920

1234567892

1234567844

1234567970

1234568951

1234578981

1234678969

1235678949

1234578993

1234567897

1234567898

1234567891

1234567966

1234568918

1234578983

1234678956

1235678921

1245678955

1345678937

1234567895

1234567895

1234567895

1234567988

1234568936

1234578932

1234678946

1235678913

1245678924

1234567896

1234567892

1234567811

1234567990

1234568979

1234578986

1678977111

1234567896

1234567891

1234567899

1234567895

1234567847

1234567941

1234568927

1234578957

1234689630

1234578960

1234678975

1235678933

1245678998

1345678920

1234567892

1234567844

1234567970

1234568951

1234578981

1234678969

1235678949

1234578993

1234567897

1234567898

1234567891

1234567966

1234568918

1234578983

1234678956

1235678921

1245678955

1345678937

1234567895

1234567895

1234567895

1234567988

1234568936

1234578932

1234678946

1235678913

1245678924

1456789841

Listing 40: Text file containing different arguments for the executable prime_fac – paramfile.txt
(documentation/GNUparallel/PrimeFactorEx/paramfile.txt)

The executable prime_fac can be run using GNU Parallel either in a batch mode using a Slurm job-
script or interactively on a compute node.

Running the Executable in Interactive-Mode: The executable can be run interactively on a compute
node using the set of commands below and the output will be displayed on the terminal. Since -n 20
is specified in the srun command, 20 cores will be used for running this job. If the execution is
interrupted due to any failures or the user exits or interrupts the execution, the option “--joblog” is
provided to create a log file that can be used to resume the execution of the job.

[login001]$ srun -p compute1 -n 20 -t 00:05:00 --pty bash

[c001]$ ml gcc/11.2.0
[c001]$ ml parallel/20210722

[c001]$ parallel --joblog logfilename.txt ./prime_fac {1} ::::

paramfile.txt

The output of the interactive job is shown below:

 The prime factors of 1234567896 are:3 83 619763

 The prime factors of 1234567891 are:1234567891

 The prime factors of 1234567899 are:3 3 3 3 109 139831

 The prime factors of 1234567895 are:5 11 23 975943

 The prime factors of 1234567847 are:47 251 104651

 The prime factors of 1234567941 are:3 23 47 199 1913

 The prime factors of 1234568927 are:491 1123 2239

 The prime factors of 1234578957 are:3 139 2960621

 The prime factors of 1234689630 are:3 5 37 1112333

 The prime factors of 1234578960 are:3 3 5 19 90247

 The prime factors of 1234678975 are:5 5 17 409 7103

 The prime factors of 1235678933 are:23 23 2335877

 The prime factors of 1245678998 are:622839499

Logs from the parallel command can be checked by opening the log file as follows:

[c001]$ cat logfilename.txt

Seq Host Starttime JobRuntime Send Receive

Exitval Signal Command

1 : 1626460968.422 0.000 0 49

0 0 ./prime_fac 1234567896

2 : 1626460968.426 0.003 0 48

0 0 ./prime_fac 1234567891

3 : 1626460968.430 0.003 0 56 0

0 ./prime_fac 1234567899

4 : 1626460968.433 0.006 0 52

0 0 ./prime_fac 1234567895

5 : 1626460968.437 0.006 0 51

0 0 ./prime_fac 1234567847

6 : 1626460968.439 0.009 0 54

0 0 ./prime_fac 1234567941

7 : 1626460968.443 0.008 0 51

0 0 ./prime_fac 1234568927

8 : 1626460968.448 0.003 0 51

0 0 ./prime_fac 1234578957

9 : 1626460968.451 0.006 0 52 0

0 ./prime_fac 1234689630

10 : 1626460968.455 0.009 0 52

0 0 ./prime_fac 1234578960

11 : 1626460968.458 0.006 0 53

0 0 ./prime_fac 1234678975

12 : 1626460968.461 0.006 0 51

0 0 ./prime_fac 1235678933

13 : 1626460968.464 0.006 0 47

0 0 ./prime_fac 1245678998

For resuming a job after interruption, the --resume-failed option should be used along with the
previously saved log file as shown in the following command:

[c001]$ parallel --resume-failed --joblog logfilename.txt \

./prime_fac {1} :::: paramfile.txt

A snippet from the output on the command prompt is shown here:

 The prime factors of 1345678920 are:3 3 3 3 5 67 6199

 The prime factors of 1234567892 are:41 7527853

 The prime factors of 1235678913 are:3 3 7 7 1009 2777

 The prime factors of 1456789841 are:13 907 123551

 The prime factors of 1245678924 are:3 7 181 81931

Logs from the job run with the --resume-failed command can be checked as follows:

[c001]$ cat logfilename.txt

A snippet of the log file is shown below:

Seq Host Starttime JobRuntime Send Receive Exitval

Signal Command

1 : 1626460968.422 0.000 0 49 0 0

./prime_fac 1234567896

2 : 1626460968.426 0.003 0 48 0 0

./prime_fac 1234567891

3 : 1626460968.430 0.003 0 56 0 0

./prime_fac 1234567899

4 : 1626460968.433 0.006 0 52 0 0

./prime_fac 1234567895

5 : 1626460968.437 0.006 0 51 0 0

./prime_fac 1234567847

If you are currently on a compute node and would like to switch back to the login node then enter the

exit command as follows:

[c001]$ exit

Running the Executable in Batch-Mode: A sample Slurm job-script to run the executable named

prime_fac is shown in Listing 41. This batch script corresponds to the serial program
prime_fac.c. This script should be run from a login node.

#!/bin/sh

#SBATCH -J prime_fac

#SBATCH -o prime_fac.txt

#SBATCH -p compute1

#SBATCH -t 00:05:00

#SBATCH -N 1

#SBATCH -n 20

ml gcc/11.2.0

ml parallel/20210722

parallel --joblog logfilename.txt ./prime_fac {1} ::::

paramfile.txt #executable named prime_fac is obtained by

compiling the program

Listing 41: Batch Job Script for C code – prime_fac.slurm
(documentation/GNUparallel/PrimeFactorEx/prime_fac.slurm)

The job-script shown in Listing 41 can be submitted as follows:

[login001]$ sbatch prime_fac.slurm

Assuming that the job-id corresponding to the submission of the job-script shown in Listing 41 is
8088547, and this job is to be interrupted using scancel, then the following command can be used:

[login001]$ scancel 8088547

The output from the Slurm batch-job shown in Listing 41 can be checked by displaying the contents of
the output file as follows:

[login001]$ cat prime_fac.txt

 The prime factors of 1234567896 are:3 83 619763

 The prime factors of 1234567891 are:1234567891

 The prime factors of 1234567899 are:3 3 3 3 109 139831

 The prime factors of 1234567895 are:5 11 23 975943

 The prime factors of 1234567847 are:47 251 104651

 The prime factors of 1234567941 are:3 23 47 199 1913

 The prime factors of 1234568927 are:491 1123 2239

 The prime factors of 1234578957 are:3 139 2960621

 The prime factors of 1234689630 are:3 5 37 1112333

 The prime factors of 1234578960 are:3 3 5 19 90247

 The prime factors of 1234678975 are:5 5 17 409 7103

 The prime factors of 1235678933 are:23 23 2335877

 The prime factors of 1245678998 are:622839499

slurmstepd: error: *** JOB $SLURM_JOBID ON c001 CANCELLED AT

2021-07-16T13:10:17 ***

If the above execution is interrupted due to any failure or the user exits or interrupts the execution, the
option “--joblog” helps in creating a log file that can be used to resume the execution of the job.

Logs from the parallel command can be checked by opening the log file as follows:

[login001]$ cat logfilename.txt

Seq Host Starttime JobRuntime Send Receive

Exitval Signal Command

1 : 1626460968.422 0.000 0 49

0 0 ./prime_fac 1234567896

2 : 1626460968.426 0.003 0 48

0 0 ./prime_fac 1234567891

3 : 1626460968.430 0.003 0 56 0

0 ./prime_fac 1234567899

4 : 1626460968.433 0.006 0 52

0 0 ./prime_fac 1234567895

5 : 1626460968.437 0.006 0 51

0 0 ./prime_fac 1234567847

6 : 1626460968.439 0.009 0 54

0 0 ./prime_fac 1234567941

7 : 1626460968.443 0.008 0 51

0 0 ./prime_fac 1234568927

8 : 1626460968.448 0.003 0 51

0 0 ./prime_fac 1234578957

9 : 1626460968.451 0.006 0 52 0

0 ./prime_fac 1234689630

10 : 1626460968.455 0.009 0 52

0 0 ./prime_fac 1234578960

11 : 1626460968.458 0.006 0 53

0 0 ./prime_fac 1234678975

12 : 1626460968.461 0.006 0 51

0 0 ./prime_fac 1235678933

13 : 1626460968.464 0.006 0 47

0 0 ./prime_fac 1245678998

For resuming a job after interruption, the --resume-failed option should be used along with the
previously saved log file.

A sample Slurm job-script to run the executable named prime_fac is shown in Listing 41. This batch
script corresponds to the serial program prime_fac.c. This script should be run from a login
node.

#!/bin/sh

#SBATCH -J prime_fac_rf

#SBATCH -o prime_fac_rf.txt

#SBATCH -p compute1

#SBATCH -t 00:05:00

#SBATCH -N 1

#SBATCH -n 20

ml gcc/11.2.0

ml parallel/20210722

parallel --resume-failed --joblog logfilename_rf.txt

./prime_fac {1} :::: paramfile.txt #executable named prime_fac

is obtained by compiling the program

Listing 42: Batch Job Script for C code – prime_fac_rf.slurm
(documentation/GNUparallel/PrimeFactorEx/prime_fac_rf.slurm)

The job-script shown in Listing 42 can be submitted as follows:

[login001]$ sbatch prime_fac_rf.slurm

The output from the Slurm batch-job shown in Listing 42 can be checked by displaying the contents of
the output file as follows:

[login001]$ cat prime_fac_rf.txt

A snippet from the output file is shown here:

 The prime factors of 1345678920 are:3 3 3 3 5 67 6199

 The prime factors of 1234567892 are:41 7527853

 The prime factors of 1234567844 are:101 1277 2393

 The prime factors of 1234567970 are:5 73 1691189

 The prime factors of 1234568951 are:7 11 17 943139

Logs from the GNU Parallel command using --resume-failed can be checked by opening the
log file as follows:

[login001]$ cat logfilename_rf.txt

A snippet from the log file is shown below:

Seq Host Starttime JobRuntime Send Receive Exitval

Signal Command

1 : 1626460968.422 0.000 0 49 0 0

./prime_fac 1234567896

2 : 1626460968.426 0.003 0 48 0 0

./prime_fac 1234567891

3 : 1626460968.430 0.003 0 56 0 0

./prime_fac 1234567899

4 : 1626460968.433 0.006 0 52 0 0

./prime_fac 1234567895

5 : 1626460968.437 0.006 0 51 0 0

./prime_fac 1234567847

