Introduction to Containerization (Docker, Docker Compose, and Singularity)

Ritu Arora
Nov 14, 2022

With Contributions from Charlie Dey, Carlos Redondo, and other colleagues from the Texas Advanced Computing Center
WHAT IS A CONTAINER?

Containers allow a developer to package up an application with all of the parts it needs, such as libraries and other dependencies, and ship it all out as one package.

Examples: Docker, Singularity
ADVANTAGES OF CONTAINERIZATION

• Help in **deploying future-proof applications** by creating packages that are almost self-contained

• Make it **convenient to distribute production and trial versions of the code** that can run on the customers’ devices without requiring an application-specific installation and configuration, hence, helps in developing a **scalable software distribution model**

• **Save time in complicated installs** - build a Docker application - push it to Docker Hub - and **reuse** it on any number of systems as you desire

• **Mitigate the portability issues related to the applications** - Dockerized applications can be ported conveniently across different cloud computing service providers - of course, you may need to install Docker and additional tools to run the Docker container depending upon the system that you are on

• Help in doing **reproducible science**
CONTAINER VERSUS VIRTUAL MACHINES

WHAT IS DOCKER?

• Docker is an open-source project designed for creating, deploying, and running applications by using containers. These containers are portable, self-sufficient and can be run on any infrastructure in the cloud or on-premises on which Docker is installed/supported.

• Three important concepts related to Docker that we will cover today:
 • Docker container
 • As mentioned on slide # 1: containers are used to package an application along with all its dependencies (such as runtime system, libraries, and data) into a single unit

• Docker image

• Dockerfile
HOW POPULAR IS DOCKER?

Accelerate how you build, share, and run modern applications.

13 million + developers
7 million + applications
13 billion + monthly image downloads

Source: docker.com [accessed November 11, 2022]
WHAT IS THE PROCESS FOR BUILDING DOCKER IMAGES?

1. Install Docker
2. Write a Dockerfile
 + **Dockerfile** is a text file that contains instructions, using which, Docker can build images automatically
 + Name of the file: Dockerfile
3. Build the Docker image and tag it
 + A file containing the snapshot of a container is known as a **Docker image**
 + It is created using the build command, and produces a container when it starts running
 + You can add tags to the images during the build step or while saving it to a repository - the default tag is “latest”
4. Run the image that you built
5. Register on DockerHub - use the credentials to push the image
 + Images are stored in a Docker registry such as registry.hub.docker.com
 + Pull Images later on any system that you want to run the application on
HOW CAN CONTAINERS BE CREATED FROM DOCKER IMAGES?

• You can use Docker commands such as “docker pull” or “docker run”
 + “Pull” will always fetch the latest version of the image from Docker Hub before running
 + “Run” will search for an image locally and run it, and if there is nothing available locally, it will go to Docker Hub.

• We will learn more about this topic during the hands-on session
Opuntia (pronounced as "up-un-chhia") is a software infrastructure for facilitating the assessment, discovery, dissemination, and reuse of publicly accessible software and data products. It consists of a catalog of software and data products, and tools named as iTracker, CompChecker, and Select-A-License.

The Opuntia project is under active research and development, and new features are added to the public release iteratively.
SOME PROJECTS USING DOCKER(2)
Getting Docker

A Docker Image is a container template from which one or more containers can be run. It is a rooted filesystem that, by definition, contains all of the file dependencies needed for whatever application(s) will be run within the containers launched from it. The image also contains metadata describing options available to the operator running containers from the image.

One of the great things about Docker is that a lot of software has already been packaged into Docker images. One source of 100s of thousands of public images is the official Docker Hub:

https://hub.docker.com

The Docker Hub contains images contributed by individual users and organizations as well as "official images".
Thanks!

Any questions, comments, or concerns?

https://github.com/ritua2/Basil/tree/main/training