
Express Bash Scripting Tutorial Part 1
Quickly Learn Bash Scripting in Linux
Brent League

Overview

• Getting Started with the vi Text Editor
• Editing and Executing Your Bash Script
• Making Your Script Executable (CHMOD

command)
• Documentation: Adding Comments to Scripts
• The Shebang!
• Creating and Using Variables
• Parameters

2

Getting Started with vi
• vi is a text editor that is included with most Linux

distributions
• To create a new file use the vi command
• login4$ vi test.sh
• Press i to start inserting text
• The “echo” command prints text to the screen:
• Type the following: echo Birds Up
• To save and quit, press “ Esc ” key, and

enter :wq!
• (press the enter key after typing :wq!)

3

Editing and Executing Your Bash Script

• Type the following: bash test.sh and press enter.
• You should see the text you typed in your test.sh

script displayed on the screen
• Now let’s edit your script and add some additional text to

it. Type the following: vi test.sh and press enter.
From within the text editor, add additional text, save the
file by pressing the “Esc” key, and enter :wq! and
pressing the enter key

• Type the following: bash test.sh and press enter.
You should now see the additional text you added

4

Making Your Script Executable

• Why do we have to type “bash” to execute
our script?

• Files by default do not have the “execute”
permission

• Use the “chmod” command to make the
script executable. Type the following:
chmod +x test.sh

5

Making Your Script Executable

• Now type, test.sh
• Notice we received an error that the

command was not found
• Linux looks for commands in the path, not

the current directory. Now type
./test.sh

• The ./ in front of the file tells the system
not to worry about the path, here’s the
location of the command

6

Documentation: Adding Comments to
Scripts

• Comments are used to document what the
different parts of a script does

• They are not displayed to the user and are
beneficial to the programmer for documentation
as a script grows.

• Open your script in the text editor again, and add
the following line at the top of the script:

Displays text to the screen

7

The Shebang!

• Our script is written specifically for the Bash
shell but there are other shells out there

• In order to make sure our script is executed
in Bash, and we get the results we want, we
need to add the following to the top line of the
script

• Open your script in the text editor again, and
add the following line at the top of the script:
#!/usr/bin/env bash

8

Creating and Using Variables
• Let’s create a new script called greetings.sh and open it in the vi

editor
• Enter the following information in your script, starting at the top line,

and then saving the file:
#!/usr/bin/env bash

FIRST_NAME=Tom
WEATHER="Partly Cloudy"
echo Hi $FIRST_NAME, the forecast is $WEATHER

• Use chmod to make the file executable:
chmod 755 greetings.sh

• Run your script by typing:
./greetings.sh

9

Passing Parameters (1)
• Parameters are used for gathering input from users.
• Let’s create a new script called params.sh, use chmod to make it

executable, and then open it in the vi editor
• Enter the following information in your script, starting at the top line, and

then save the file:
#!/usr/bin/env bash

echo Hello $1

• Now run the params.sh script as follows
./params.sh
Hello

• Run the params.sh script and add a name to the end of it each time you
run it. Notice the difference in output?

./params.sh Tom
Hello Tom
./params.sh Tammy
Hello Tammy

10

Passing Parameters (2)
• It may be helpful to use variables for holding the parameters

passed from the command line. Since the names in the
previous example have no meaning, you should assign a
variable to the parameter, so the variable can give some
meaning to it. Open your params.sh script in the vi editor
again

• Let’s define a variable as such:
USER_NAME=$1

• Now, let’s change our echo command to use our variable:
echo Hello $USER_NAME

• Run your params.sh script again by typing:
./greetings.sh Kelly

• The results are the same, but now when we review our script
it makes more sense to us

11

Passing Parameters (3)

• Now we are going to practice adding various system commands to our Bash
script. Open params.sh with vi and add the code highlighted in red
#!/usr/bin/env bash
USER_NAME=$1
echo Hello $USER_NAME
echo $(date)
echo $(pwd)

exit 50

• Run your script again and add a name to the end of it as shown below:
./params.sh Aurin

• You should see the following response which includes system time, as well
as your current working directory:
Hello Aurin
Thu Sep 3 15:32:47 CDT 2020
/home-new/ytf623

12

Passing Parameters (4)
• Scripts that execute without an error should return a “0” to the

system. We can check this by typing echo $? (you should
receive an exit code of “0” indicating there were no errors and
the script completed successfully).

• We can change the value that is returned by editing our
params.sh script. Enter the following information at the end
of the script, and then save the script and exit the vi editor:

exit 50

• If the script executed without error, you should now receive a
“50” in response to the echo $? command

13

Express Bash Scripting Tutorial Part 1
Quickly Learn Bash Scripting in Linux
Brent League

