
Express Bash Scripting Tutorial Part 2
Quickly Learn Bash Scripting in Linux
Brent League

Overview

• The If Statement
• The Else Clause
• The Elif Clause
• The While Loop
• The For Loop
• Using Break and Continue

2

The If Statement
Create a new script called if.sh and make it executable as
shown in part one of our Bash training sessions.
COLOR=$1
if [[$COLOR = “blue"]]
then
Echo "The color is blue"

fi

USER_GUESS=$2
#Set Computer’s value to 50
COMPUTER=50

if [[$USER_GUESS –lt $COMPUTER]]
then
echo "You're too low"

fi

3

Boolean Values

We used the less than (or –lt) value in the previous script,
but we have a lot more options using Boolean values when
comparing numbers. For example:
• -eg – if equal
• -ne – if not equal
• -lt – if less than
• -gt – if greater than
• -le – if less than or equal
• -ge – if greater than or equal

4

The If Statement
Create a new script called if.sh and make it executable by typing:
chmod +x if.sh

COLOR=$1
if [[$COLOR = "blue"]]
then
Echo "The color is blue"

fi

USER_GUESS=$2
#Set Computer’s value to 50
COMPUTER=50

if [[$USER_GUESS –lt $COMPUTER]]
then
echo "You're too low"

fi

5

The Else Clause

• The “else” clause allows us to perform one task if the
expression is true, and perform a different task if the
expression is false

• If the expression is false, the commands following the
“else” command up to the “fi” command are executed

• If the expression is true, the script will execute the
commands between “then” and “fi”

6

Using the Else Clause in a Script

#!/usr/bin/env bash
COLOR=$1
if [[$COLOR = "blue"]]
then
echo "The color is blue"

else
echo "The color is NOT blue"

fi

USER_GUESS=$2
COMPUTER=50

if [[$USER_GUESS -lt $COMPUTER]]
then
echo "You're too low"

else
echo "You're equal or too high"

fi

7

The Elif Clause

• The “elif” clause stands for “else if”
• It allows us to check for a different expression than the

one used in the “if”
• “elif” must come before the “else” clause which must be

the last clause in the “if” statement
• Let’s add the following to our if.sh script right above

the else clause (which must be the
elif [[$USER_GUESS -gt $COMPUTER]]
then
echo "You're too high"
else
echo "You've guessed it"

8

The While Loop

• Loops give us the ability to execute our code repetitively
• Let’s create a script and call it while.sh
#!/usr/bin/env bash

COUNT=0

while [[$COUNT -lt 10]]
do
echo "COUNT = $COUNT"
((COUNT++))
done

echo "while loop finished"
exit 0

9

The For Loop

• The “for” statement used in conjunction with the loop
command is used to instruct our script to perform a
function that is followed by our “for statement.

• In previous exercises, we’ve asked for parameters
individually by using $1, $2, etc. But this time, we’ll use
a special symbol that is entered as $@

• The $@ symbol holds all of the values a user enters in
one array.

10

The For Loop

Let’s create a new script called for.sh and include the
following text (:

#!/usr/bin/env bash

NAMES=$@
for NAME in $NAMES
do
echo "Hello $NAME"

done
echo "for loop terminated"
exit 0

11

The For Loop

Now run the command and enter a name, or multiple
names separated by a space:
./for.sh Brent Aurin Tina Bob

The output should look like this:

Hello Brent
Hello Aurin
Hello Tina
Hello Bob
for loop terminated

12

Using Break with Loops

• There are two special instructions that can be used with
loops

• Let’s talk about the break instruction first
• Break causes the current loop to terminate if a certain

value is provide by a user and it will then begin executing
any instructions AFTER the done statement in your script

• Let’s take a look at it’s function in the next slide

13

Using Break with Loops
#!/usr/bin/env bash
NAMES=$@

for NAME in $NAMES
do
if [[$NAME = "Sally"]]
then
break
fi
echo "Hello $NAME"

done

echo "for loop terminated"
exit 0

14

Using Continue with Loops

• In our previous example, you can see that the break
instruction went to the end of the loop

• In contrast to the break instruction, the continue
instruction goes to the top of the loop

• Let’s edit the for.sh script again
• In this case, we are simply going to replace the break

instruction with the continue instruction and see what
happens

15

Using Continue with Loops
#!/usr/bin/env bash

NAMES=$@

for NAME in $NAMES
do
if [[$NAME = "Sally"]]
then
continue

fi
echo "Hello $NAME"

done

echo "for loop terminated"
exit 0

16

Express Bash Scripting Tutorial Part 2
Quickly Learn Bash Scripting in Linux
Brent League

