UTSA

The University of Texas at San Antonio

University Technology Solutions

Express Bash Scripting Tutorial Part 2
Quickly Learn Bash Scripting in Linux

Brent League

Overview

ne If Statement

ne Else Clause

ne Elif Clause

ne While Loop

ne For Loop

« Using Break and Continue

- o4 4 4 o

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The If Statement

Create a new script called if.sh and make it executable as
shown in part one of our Bash training sessions.

COLOR=51
if [[SCOLOR = “blue"]]
then

Belne. Ylne celer s loliue?
fi

USER GUESS=S2
#Set Computer’s value to 50
COMPUTER=50

iE L SUSER CUESE =Lt SCOMPUTER | .
then

E@ae loulr Ee reer Lot
fi

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Boolean Values

We used the less than (or —It) value in the previous script,
but we have a lot more options using Boolean values when
comparing numbers. For example:

« -eg - if equal

* -ne — if not equal

* -|t—if less than

e -gt—if greater than

* -le —if less than or equal

« -ge — if greater than or equal

versity of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The If Statement

Create a new script called if.sh and make it executable by typing:
chmod +x 1f.sh

COLOR=S51
if [[SCOLOR = "blue" 1]
then

Felae Hillae @oleis s ol
fi

USER GUESS=52
#Set Computer’s value to 50
COMPUTER=50

if [[$USER GUESS -1t $SCOMPUTER 1]]
then

echo "You're too low"
el

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The Else Clause

 The “else” clause allows us to perform one task if the

expression is true, and perform a different task if the
expression is false

 If the expression is false, the commands following the
“‘else” command up to the “fi” command are executed

 If the expression is true, the script will execute the
commands between “then” and “fi”

versity of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Using the Else Clause in a Script

#!/usr/bin/env bash

COLOR=S1

if [[SCOLOR = "blue" 1]

then

echo "The color is blue"
else

cElno. Hillae o les e (O ol
fi

USER GUESS=52
COMPUTER=50

if [[SUSER GUESS -1t SCOMPUTER]]
then

echo "You're too low"

else

echo "You're equal or too high"
inak

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The Elif Clause

« The “elif” clause stands for “else if”

|t allows us to check for a different expression than the
one used in the “if”

« “elif’ must come before the “else” clause which must be
the last clause in the “if” statement

« Let's add the following to our i f. sh script right above

the else clause (which must be the
S| $USER_GUESS =g SCOMPULEER]
Elazi
S@ElaEy LSl EE EOIe JaulGrant
else
echo "You've guessed 1it"

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The While Loop

* Loops give us the ability to execute our code repetitively

 Let’'s create a scriptand call it while.sh
#!/usr/bin/env bash

COUNT=0
whille [[SCOUNT =1& 10 J]
do
echo "COUNT = SCOUNT"
L LCOONIT =R)1)
done

echo "while loop finished"
Sicilies 1l

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The For Loop

* The “for” statement used in conjunction with the loop
command is used to instruct our script to perform a
function that is followed by our “for statement.

* In previous exercises, we've asked for parameters
individually by using $1, $2, etc. But this time, we’ll use
a special symbol that is entered as $@

« The $@ symbol holds all of the values a user enters in
one array.

versity of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

The For Loop

Let’s create a new script called for. sh and include the
following text (:

= Juge/ oln/eny leaah

NAMES=S5@

for NAME in S$SNAMES
do

echo "Hello SNAME"
done

2@l Liten 1Leoe LemiiLnsiiee
cpalie (0

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Now run the command and enter a name, or multiple

The For Loop

names separated by a space:
./for.sh Brent Aurin Tina Bob

The output should look like this:

Hello
Hello
Hello
Hello

Brent
Aurin
Tina
Bels

E@ie LOED Bl gitEel

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Using Break with Loops

* There are two special instructions that can be used with
loops

o Let’s talk about the break instruction first

* Break causes the current loop to terminate if a certain
value is provide by a user and it will then begin executing
any instructions AFTER the done statement in your script

o Let’s take a look at it’'s function in the next slide

versity of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Using Break with Loops

#!/usr/bin/env bash
NAMES=S$(@

for NAME in S$NAMES
do

if [[SNAME = "Sally"]]
then

break

fifgt

echo "Hello S$NAME"

done

Seloiel Litend L010)8 e iaiiisiEBE]el
exit O

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Using Continue with Loops

* |In our previous example, you can see that the break
instruction went to the end of the loop

* |n contrast to the break instruction, the continue
instruction goes to the top of the loop

* Let's edit the for. sh script again

* In this case, we are simply going to replace the break
iInstruction with the continue instruction and see what
happens

versity of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Using Continue with Loops

#!/usr/bin/env bash
NAMES=S(@

for NAME in $NAMES

do
SiiE NIV s =10 M A |
then
continue
[l
echo "Hello S$NAME"
done

echo "for loop terminated"
exit O

The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

UTSA

The University of Texas at San Antonio

University Technology Solutions

Express Bash Scripting Tutorial Part 2
Quickly Learn Bash Scripting in Linux

Brent League

