
Express Bash Scripting Tutorial Part 3
Quickly Learn Bash Scripting in Linux
Brent League

Overview

• Environment Variables
– Reading Environment Variables
– Standard Environment Variables

• Functions
– The Basics of Functions
– Using Parameters
– Piping

2

Reading Environment Variables
Create a new script called vars.sh and make it
executable by typing chmod +x vars.sh

Your new script should include the following lines:

#!/usr/bin/env bash

echo "The PATH is: $PATH"
echo "The terminal is: $TERM"

echo "The editor is: $EDITOR"

3

Reading Environment Variables

We can detect if a value is not set by using an IF statement

Add the lines in red to your vars.sh script
#!/usr/bin/env bash

echo "The PATH is: $PATH"
echo "The terminal is: $TERM"
echo "The editor is: $EDITOR"

if [[-z $EDITOR]]
then
echo "The EDITOR variable is not set"

fi

4

Changing Environment Variables
We can change the value of any environment variables in
our script. Add the lines in red to your vars.sh script

#!/usr/bin/env bash

echo "The PATH is: $PATH"
echo "The terminal is: $TERM"
echo "The editor is: $EDITOR"

if [[-z $EDITOR]]
then
echo "The EDITOR variable is not set"

fi

PATH="/UTSA"
echo "The PATH is $PATH"

5

Changing Environment Variables
Let’s execute our script and view the output. Type
./vars.sh and press the enter key

The PATH is: /home-
new/ytf623/bin:/cm/shared/apps/sge/2011.11p1/bin/linux-
x64:/cm/local/apps/gcc/8.2.0/bin:/cm/shared/apps/slurm/18.08.9/sb
in:/cm/shared/apps/slurm/18.08.9/bin:/cm/local/apps/environment-
modules/4.2.1//bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/s
bin:/sbin:/usr/sbin:/cm/local/apps/environment-
modules/4.2.1/bin:/opt/dell/srvadmin/bin:/home-
new/ytf623/.local/bin:/home-new/ytf623/bin
The terminal is: xterm
The editor is:
The EDITOR variable is not set
The PATH is /UTSA

Note: Your path output is going to differ slightly from what
you see here

6

Standard Environment Variables

• HOME – user’s home directory
• PATH – directories which are searched for commands
• HOSTNAME – hostname of the machine or system
• SHELL – shell that is being used
• USER – user of this session
• TERM - type of command-line terminal being used

7

The Basics of Functions

• Functions let us avoid duplicating code in our scripts

• We can create a function to hold a single copy of code that can be
called from multiple places

• There are two ways to create functions – the first is to begin the
statement with the word “function” and then enter the name of the
function followed by a set of parenthesis. Or you can skip the word
“function” altogether and enter the NAME of the function, followed by
a set of parenthesis

8

The Basics of Functions
Create a new script called func.sh and make it executable by
typing chmod +x func.sh

Add the following lines of code:

#!/usr/bin/env bash

function GoUTSA() {
echo "Go UTSA"

}

GoRoadrunners() {
echo "Go Roadrunners"

}

GoUTSA

GoRoadrunners

9

Using Parameters with Functions
We can pass parameters to our functions just like we can to our scripts
by using the parameter symbols. Now add the code in red to the
func.sh script

#!/usr/bin/env bash

function GoUTSA() {
local TNAME= $1
echo "Go UTSA $1"

}

GoRoadrunners() {
echo "Go Roadrunners $1"

}

GoUTSA Football
GoRoadrunners Baseball
GoRoadrunners Basketball
GoUTSA Volleyball

10

Using Parameters with Functions
Execute the script by typing ./func.sh

Your output should resemble the following:

Go UTSA Football
Go Roadrunners Baseball
Go Roadrunners Basketball
Go UTSA Volleyball

11

Piping

• Pipes let us take the output of one program and feed it to
the input of another.

• Let’s create a script and call it pipe.sh. What we want
to do is show the first three files in our current directory
in descending alphabetical order – each file should also
have a count.

12

Piping
Let’s create a new script called pipe.sh and include the
following commands:
#!/usr/bin/env bash

FILES=`ls -1 | sort -r | head -3`
COUNT=1

for FILE in $FILES
do
echo "File #$COUNT = $FILE"
((COUNT++))

done

13

Piping
The code that follows the FILES= statement tells our
script to do the following:

ls -1 displays our directory contents in a single column
sort -r changes the sort order from alphabetical to reverse
alphabetical order
head -3 instructs our script to display the first 3 results

Execute the script by typing ./pipe.sh and you should see the
following output:
File #1 = while.sh
File #2 = vars.sh
File #3 = user.sh

Note: the file names in your output may be different, depending on what
you have in your directory

14

Express Bash Scripting Tutorial Part 3
Quickly Learn Bash Scripting in Linux
Brent League

