
Express Bash Scripting Tutorial Part 4
Quickly Learn Bash Scripting in Linux
Brent League

Overview
• File Operations

– Reading Files
– Writing Files
– File Checksums

• Sleep and Process
– Using the Sleep Command
– Watching a Process

• Interactive Scripts
– Getting Input from Users
– Handling Bad Data

2

File Operations: Reading Files
• Read a text file into a script using the read command &

redirection

• After this exercise you will know how to read a text file
into a script and display the contents of the text file

• Let’s start off by using your text editor to create a file
called names.txt, enter four or five names on separate
lines, and then save it. We’ll be able to read it with our
script later

3

File Operations: Reading Files
Using your text editor, let’s create a script called
reader.sh with the following information in it:

#!/usr/bin/env bash
COUNT=1

while IFS='' read -r LINE
do
echo "LINE $COUNT: $LINE"
((COUNT++))

done < "$1"

4

File Operations: Reading Files
After you save the script from the previous slide, type in
./reader.sh names.txt – the output we should see is
all the names from our text file and their line numbers
beginning with Line 1 since we defined a counter (COUNT=1)
that told our script to begin counting at 1

LINE 1: Tammy
LINE 2: Kelly
LINE 3: Tina
LINE 4: Bob
LINE 5: David

5

File Operations: Writing Files
• There are two ways to redirect output of a script to a file

– Let’s use the reader.sh script to redirect the list of names to a
new file. Type the following:

./reader.sh names.txt > output.txt

– When using a single greater than sign, it will create a new file –
but if the file name already exists, the existing data will be
overwritten.

– Now that output.txt has been created with data in it, let’s explore
how to append data to it instead of overwriting it. It’s as simple
as using the same command as above but use TWO greater
than symbols.

./reader.sh names.txt >> output.txt

echo "The PATH is: $PATH"
echo "The terminal is: $TERM"

6

File Operations: File Checksums

• A checksum is a value that is used to validate the
integrity of a file. Let’s explore how we can detect if a file
has been tampered with
– From the terminal window, type the following: cksum
names.txt (we should see the checksum value and the
number of bytes in the file)

– Let’s open the txt file with our text editor and add an extra
character to one of the names. Then, run the same command:
cksum names.txt The checksum should change and so
should the number of bytes

– Finally, let’s edit the text file and remove the extra character, and
run cksum names.txt again. The checksum and the byte
count should return to the original values.

7

Sleep & Process: Using the Sleep Command
Sometimes we need a script or process to only run intermittently, or
start later. The sleep command can be used to have our script go to
sleep until it is needed, and then execute the remaining commands.
Create a new script called delay.sh

#!/usr/bin/env bash

DELAY=$1
if [[-z $DELAY]]
then

echo "You must supply a delay"
exit 1

fi

echo "Going to sleep for $DELAY seconds"
sleep $DELAY
echo "We are awake now"
exit 0

8

Watching a Process
We can have a script watch other processes and message when they
terminate. Create a script called proc.sh and add the following lines
of code to it:
#!/usr/bin/env bash

STATUS=0

if [[-z $1]]
then
echo "Please supply a PID"
exit 1

fi

echo "Watching PID = $1"
while [[$STATUS -eq 0]]
do
ps $1 > /dev/null

#the command BELOW picks up the status of the LAST command ran – it will tell us
#if the PS command was successful
STATUS=$?
done

echo "Process $1 has terminated"
exit 0

9

Getting Input from Users
We can create an interactive script by using the “read”
command to gather input from the user. Create a script
called prompt.sh and add the following lines to it:

#!/usr/bin/env bash

read -p "What is your first name: " NAME
echo "Your name is: $NAME"
exit 0

10

How to Handle Bad Data
When you’re asking users to provide input, they might not enter all of
the data your script requires to execute properly, or the data may not be
in the correct format. Let’s explore how to address this.

In this example, we need two parameters from the user; their name
(alphabetical characters, and their age (an integer).

Let’s create a script and call it user.sh

The next slide shows the code that your user.sh script should
contain.

The slides following the sample code will explain what each line
accomplishes.

11

How to Handle Bad Data
#!/usr/bin/env bash
VALID=0

while [[$VALID -eq 0]]
do

read -p "Please enter your name and age: " NAME AGE
if [[(-z $NAME) || (-z $AGE)]]
then

echo "You did not enter all of the requested information"
continue

elif [[! $NAME =~ ^[A-Za-z]+$]]
then

echo "Non alpha characters detected [$NAME]"
continue

elif [[! $AGE =~ ^[0-9]+$]]
then
echo "Non numerical character detected [$AGE]"
continue

fi
VALID=1
done
echo "Your name is $NAME and your age is $AGE"
exit 0

12

How to Handle Bad Data
Now we will explain what each line of code from the pervious slide
performs
• VALID=0 is a global variable that whether we consider the input valid or not
• Then we will create a “while” loop with by entering $VALID -eq 0 – this

says as long as valid equals zero, we’re going to continue in our “while” loop
• After the do statement ,we are going enter read –p this tells the script to

put the user input on the same line as the prompt, which have entered in
quotations. At the end of this line, we are going to enter our input variables:
– NAME and AGE

• Our if statement is going to make sure we received data in both of the
parameters we are expecting to have data in – the –z you see in the
parentheses checks to see if the input value is empty

• In between our two variables, we have to pipes || - two pipe symbols are
the same as an “or” statement, so if either one of these are true, we didn’t
get enough parameters.

(continued on next slide)

13

How to Handle Bad Data
Explanation of each command (continued from the previous slide)
• It that’s the case, then we will echo out something to let the user know that

we didn’t get what we needed. If that’s the case, we will use the continue
command to go back to the top of the loop

• Otherwise we will move to the elif line. The ! is a “NOT” symbol, so we
are reversing the logic of this test – then $NAME =~ What we are doing on
this line is performing a regular expression to make sure any characters in
the name are alphabetic. So A through Z upper case or lower case are
acceptable input. The ^ symbol you see next, tells the command to start
from the beginning of the string. The + sign meant that this string must end
here as well

• Next, we’ll do a then in case this test fails and we will echo a statement to
give the user a hint as to what is wrong, and follow it with a continue
statement and go back to the top of the loop

• The next four lines beginning with the elif, are exactly the same, but we
are looking for integers for the age value this time

(continued on next slide)
14

How to Handle Bad Data
Explanation of each command (continued from the previous slide)

• Next, we’ll do a fi before we exit the loop
• Since we’ve passed all the validation steps, we’re going to enter

VALID=1 and then close out the loop with done, and echo back the
user’s input in the final line

• Now that you have an understanding of each line in our script, let’s
execute it by typing ./user.sh and then move to the next slide to
see our output

15

How to Handle Bad Data
After entering ./user.sh, I am prompted for my name and my age.

The text in black is what was echoed to the screen, and the text in red
is what I entered.

Please enter your name and age: Brent 21
Your name is Brent and your age is 21

Take a few minutes to experiment with this script and enter your age
and your name in the wrong order, or enter nothing at all and view the
various results you get from the script.

16

Express Bash Scripting Tutorial Part 4
Quickly Learn Bash Scripting in Linux
Brent League

