R
How to add packages to your local repository
Depending on the packages you want installed, you can do one of two things within R. First we load the R module and run R:
[abc123@login01 ]$ module load R/3.5.1
[abc123@login01 ]$ R
For
BioConductor packages, type the following:
source("https://bioconductor.org/biocLite.R")
biocLite()
Install specific packages, e.g., “GenomicFeatures” and “AnnotationDbi”, with
biocLite(c("GenomicFeatures", "AnnotationDbi"))
The
biocLite()
function (in the
BiocInstaller package installed by the
biocLite.R
script) has arguments that change its default behavior; type
?biocLite
for further help. For more information regarding the
BioConductor package, please visit their Installation website here
https://www.bioconductor.org/install/
For CRAN packages, type the following:
install.packages(c("package_name"))
How to use R or Rstudio on Shamu
Now that you have your packages installed, you have two (2) ways of using R on Shamu, interactively or non-interactive.
Non-interactive
Below is a sample submit script that you can edit for your R input file and submit with qsub name_of_this_file.qsub. This sample assumes you are using R in parallel mode and requesting 20 cores.
#!/bin/bash
#$ -S /bin/bash
#$ -N Name_of_job
#S -q all.q
#$ -cwd
#$ -j y
#$ -o $JOB_ID.log
#$ -pe threaded 20
. /etc/profile.d/modules.sh
# Load one of these
module load shared R/3.5.1
R -e "source('Script_Simulation_2_15_65.R')"
Interactive
Grab a compute node with qlogin, load the rstudio module and run the rstudio program:
[abc123@login01 ~]$ qlogin
[abc123@compute015 ~]$ module load R/3.5.1 rstudio
[abc123@compute015 ~]$ rstudio
Using R in parallel mode
Your R input file must contain the parallel() section for parallel execution of R binaries to work properly. Here is an example:
require(parallel); require(mvtnorm); set.seed(2000)
cat('Cores: ', detectCores(), '\n')
Using R with GPU
You need to log onto a
GPU node and install gpuR library
[abc123]@login02 ~]$ qlogin -q gpu.q
on a
GPU node, load the modules for
CUDA and R
[abc123]@gpu02 ~]$ module load cuda90/toolkit
[abc123]@gpu02 ~]$ module load R/3.5.1
and launch R and install the gpuR library
[abc123]@gpu02 ~]$ R
> install.packages("gpuR")
The current version of gpuR can only identify one
GPU.
Current installed R packages
> installed.packages()[1:5,]
Package LibPath Version Priority
Depends
beachmat NA
BiocParallel "methods"
BiocSingular NA
DelayedArray "R (>= 3.4), methods, stats4, matrixStats, BiocGenerics (>=\n0.27.1), S4Vectors (>= 0.21.7), IRanges (>= 2.17.3),\nBiocParallel"
formatR "R (>= 3.0.2)"
Imports
beachmat "methods, DelayedArray, BiocGenerics, Matrix"
BiocParallel "stats, utils, futile.logger, parallel, snow"
BiocSingular "BiocGenerics, S4Vectors, Matrix, methods, utils, DelayedArray,\nBiocParallel, irlba, rsvd, Rcpp"
DelayedArray "stats, Matrix"
formatR NA
LinkingTo
beachmat NA
BiocParallel "BH"
BiocSingular "Rcpp, beachmat"
DelayedArray "S4Vectors"
formatR NA
Suggests
beachmat "testthat, BiocStyle, knitr, rmarkdown, devtools"
BiocParallel "BiocGenerics, tools, foreach, BatchJobs, BBmisc, doParallel,\nRmpi, GenomicRanges, RNAseqData.HNRNPC.bam.chr14,\nTxDb.Hsapiens.UCSC.hg19.knownGene, VariantAnnotation,\nRsamtools, GenomicAlignments, ShortRead, codetools, RUnit,\nBiocStyle, knitr, batchtools, data.table"
BiocSingular "testthat, BiocStyle, knitr, rmarkdown, beachmat"
DelayedArray "Matrix, HDF5Array, genefilter, SummarizedExperiment, airway,\npryr, DelayedMatrixStats, knitr, BiocStyle, RUnit"
formatR "codetools, shiny, testit, rmarkdown, knitr"
Enhances License License_is_FOSS License_restricts_use
beachmat NA "GPL-3" NA NA
BiocParallel NA "GPL-2 | GPL-3" NA NA
BiocSingular NA "GPL-3" NA NA
DelayedArray NA "Artistic-2.0" NA NA
formatR NA "GPL" NA NA
OS_type MD5sum NeedsCompilation Built
beachmat NA NA "yes" "3.6.0"
BiocParallel NA NA "yes" "3.6.0"
BiocSingular NA NA "yes" "3.6.0"
DelayedArray NA NA "yes" "3.6.0"
formatR NA NA "no" "3.6.0"
--
AdminUser - 26 Jul 2017